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ABSTRACT
This paper presents Mission, the first-of-this-kind cross-modal rei-
dentification (ReID) design for mmWave Radar and RGB cameras.
Given a person of interest detected by Radar in camera-restricted
scenarios, Mission can identify the image of the person from cam-
eras that are ubiquitously deployed in camera-allowed areas. We
envision that cross Vison-RF ReID can significantly enrichmmWave
human sensing with a wide spectrum of applications in security
surveillance, tracking, and personalized services. Technically, we
introduce a novel method for cross-modal similarity estimation that
exploits inherent synergies between fine-grained 2D images and
coarse-grained 3D Radar point clouds to effectively overcome their
modal discrepancy. Through extensive experiments, we demon-
strated that our proposed system can achieve 85% top-1 accuracy
and 90% top-5 accuracy among 58 volunteers.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization → Embedded and
cyber-physical systems.
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1 INTRODUCTION
Millimeter-wave (mmWave) radar is becoming increasingly popular
in human sensing tasks such as occupancy detection [29], trajec-
tory tracking [42], action recognition, and pose estimation [38].
Discerning a person’s identity is crucial for radar applications in
contexts like security surveillance and personalized services. How-
ever, current mmWave identification methods require extensive
data collection and training using prior instances of the person
of interest in the same area [8, 39], which is not practical in dy-
namic real-world situations where individuals constantly change.
For example, using mmWave radar to recognize an intruder be-
comes unfeasible when the individual was previously captured and
labeled.

The practical limitation of radarmotivates us to propose Mission
(mmWave + vision), a cross-modal Re-identification (ReID) design:
given a person detected by a mmWave sensor, the system can iden-
tify the same person in camera footage based on the consistency
of gait characteristics across distinct sensors. By doing this, we
exploit ubiquitously deployed cameras to extend the reach of radar
identification towards previously unencountered individuals. This
technology also presents the opportunity to extract valuable charac-
teristics from associated images, such as age, gender, and clothing.
This additional data can be harnessed to enhance the personaliza-
tion of services in radar sensing applications while ensuring that
fine-grained activities and sensitive behaviors remain confidential.

Despite the ReID problem being separately studied for the sin-
gle modality (i.e., images [13, 24, 31] or mmWave [39, 42]), the
cross-modal identification imposes new challenges stemming from
the inherent modality discrepancy between images and radar in
dimensionality and granularity. As Fig.1 depicts, the RGB cameras
provide fine-grained details of individuals, but two-dimensional
(2D) images lose critical depth information (e.g., height and stride
length), while mmWave radar returns three-dimensional (3D) point
clouds. However, point clouds of radar are very sparse and noisy
due to the limited resolution of the low-cost radar. Consequently,
the similarity between a person’s images and radar point clouds
cannot be evaluated directly.

To bridge the gap between camera and radar, we propose a novel
cross-modal similarity estimation method that carefully leverages
the inherent synergies between 2D images and 3D radar point
clouds. Our key insight is that RGB images and radar point clouds
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Fig. 1. Appications of Mission .

of the same individual contain highly complementary features. For
example, images excel at capturing intricate body shapes, whereas
radar can precisely estimate absolute height. After exchanging
these mutually complementary features, both modalities can be
enhanced to accurately project 3D skeletons of an individual’s gait.
This explicitly brings them into a close alignment within the shared
feature space. In contrast, amalgamating multi-modal data from dis-
tinct identities yields less accurate and potentially unreal skeleton
estimation. This discrepancy of results arises from the intrinsic dis-
parities in gait characteristics between different individuals, causing
their features to disperse within the feature space.

To translate these insights into a practical solution, we present
a novel end-to-end neural network consisting of several critical
components. We start by extracting single modal gait features from
radar point clouds and candidate images. A novel coordinated rep-
resentation network is introduced to align features of different
modalities into a coordinated feature space. This network incorpo-
rates a multi-modal non-local network (NLN) [34] with inter-modal
mutual attention to exchange complementary feature among im-
ages and radar. Our design manages to integrate the most pertinent
features from radar (e.g., depth) into RGB images and vice versa,
while carefully handling their spatial-temporal alignment. With the
coordinated features, a similarity estimator based on deep metric
learning is adopted to find the identity of the most akin individual
in the gallery of candidates.

To summarize, our contributions are as follows:

• To the best of our knowledge, we present Mission, the first
cross-modal ReID design among commercial mmWave radar
and RGB cameras, enriching emerging radar applications
with ubiquitous cameras.

• We propose a new cross-modal similarity estimation method
that judiciously usesmulti-modal coordinated representation
to address model discrepancy and practical challenges (e.g.,
spatial-temporal misalignment).

• We collect a multi-modal gait dataset of 58 volunteers across
various scenes and viewpoints. The evaluations show our
design achieves a top-1 accuracy of 85% and a top-5 accuracy
of 90%, which outperforms the traditional cross-modal ReID
baselines by 30%.

2 MOTIVATION AND CHALLENGES
2.1 Benefits of Cross Vision-RF ReID
The emergence of low-cost mmWave radar presents a compelling
alternative to cameras in various human sensing tasks, bringing
several benefits. As a radio frequency (RF) sensor, radar is more ro-
bust against poor lighting conditions (e.g., darkness and glare) than
cameras. Moreover, it can operate inconspicuously behind the wall,
causing fewer privacy concerns than cameras in scenarios where
cameras are not allowed such as homes, hospitals, and confidential
areas within office spaces. For example, hospitals in Hong Kong
and Israel have deployed mmwave radar for contactless patient
monitoring [1]. Radar technology is also increasingly used in smart
buildings to provide human presence detection that is robust to
occlusion and particles in the air [3].

As shown in Fig.1, this work aims at associating the person
detected by radar with video footage of cameras deployed in pub-
lic areas, which can find a broad set of applications including (i)
Surveillance: When an intruder broke into an area monitored by
radar (as shown in Fig.1(a)), the police can use the ubiquitous cam-
eras to identify the intruder’s image. Similarly, when the footage
of a criminal is available, the radar infrastructure can also be used
to detect if the person is hiding inside the camera-restricted ar-
eas; (ii) Tracking: In Fig.1(b), Mission enables seamless tracking
of people when they walking between camera-allowed area (e.g.,
lobby) and camera-restricted (e.g., meeting room), which is impor-
tant for trajectory analysis and contact tracing; (iii) Personalized
experience: In a smart hotel (Fig.1(c)), each guest can upload the
preferences (e.g., temperature, lighting, and favorite music) and a
video snippet of gait, by which the radar can identify who is in the
room and adjust the smart room accordingly.

This work primarily focuses on the technical feasibility of cross-
modal ReID. However, it is essential to emphasize that similar to
other biometrics recognition techniques [32], the application of
Mission must be carefully managed to prevent potential misuse
and address ethical concerns. In practice, several ethical processes
can be followed to ensure that the technology is developed and used
responsibly. First, data collection and storage must obey the Data
Protection Laws and Surveillance Laws of the country or region
such as the General Data Protection Regulation (GDPR) in Europe.
For example, the data could be restricted to be used by authorized
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personnel, such as law enforcement who are investigating an intru-
sion. Moreover, the application must undergo a review by an ethics
board or Institutional Review Board (IRB) to make sure that the it
aligns with ethical standards and minimizes harm to individuals.
Finally, individuals (e.g., hotel guests) could be asked to provide
informed consent before their data is collected.

2.2 Challenges
The crux of cross-modal ReID lies in addressing dramatically dif-
ferent characteristics between two modalities that make their simi-
larity unable to be gauged directly. As Table. 1 summarizes, RGB
images and radar point clouds suffer from modal discrepancy in
dimension and granularity. The surveillance camera records RGB
images containing rich vision information. Nonetheless, the hu-
man motions in the three-dimensional space are flattened by the
camera into the two-dimensional image plane and therefore lose
important depth information, leading to inherent ambiguities in
2D-to-3Dmapping [17]. In contrast, mmWave radar uses frequency-
modulated continuous waves (FMCW) that can estimate the range,
velocity, and angles and generate the 3D point cloud of the target.
However, the low-cost radar suffers from limited angular resolution
(typically > 15◦ [2]), specular reflection of mmWave signal on the
skin, and multi-path interference. This results in sparse and noisy
3D point clouds without fine-grained details of a person.

Sensor Data Dimen. Granularity Noise
Radar Point cloud 3D 64 points high
Camera RGB image 2D 1280x720 pixels low

Table 1: Modal discrepancy: Radar vs. Camera.

In addition, it is noteworthy that our cross-modal ReID is distinct
from conventional multi-modal fusion problems [6, 29]. Specifically,
video and radar point clouds are acquired at different times and
disjointed locations. The query (radar) and candidates (RGB) are
different instances of gaits, leading to several practical challenges.
For instance, the camera and radar could capture the subject from
distinct angles for different amounts of time. The subject could also

exhibit a minor gait variation caused by the mood or environment
[11]. As a result, the cross-modal similarity estimator has to ro-
bustly deal with temporal misalignment, diversity of viewpoints,
and minor gait changes among different instances.

3 DESIGN
3.1 System Overview
Our system is designed to re-identify individuals detected by radar
in videos captured by RGB cameras. We assume that the radar and
camera are installed in non-overlapping areas and capture different
instances of individuals’ gait. As illustrated in Fig. 2, the system
takes as input radar point clouds corresponding to the person of
interest (denoted as a query) and a gallery of RGB video footage
containing potential candidates. The RF feature extraction module
denoises and clusters the sparse 3D point cloud of the person pro-
duced by radar. Gait features (denoted as RF features) are extracted
from the pre-processed point cloud using PointNet [25]. Mean-
while, the vision feature extraction module detects and bounds the
candidates present in the RGB videos. Then it uses a pre-trained
TCMR [9] network to extract visual features from the bounded
targets. These vision features represent the 2D pose information of
the person in the video. The critical component is the coordinated
representation module that aligns the heterogeneous RF and vision
features in the coordinated feature space. Our coordinated repre-
sentation design features 1) a complementary feature exchange
mechanism that eliminates the modality discrepancy between vi-
sion and RF features and 2) an auxiliary 3D pose estimation task that
guides the cross-modal representation learning procedure. Finally,
deep metric learning estimates the similarity between the aligned
RF feature of the query and the aligned vision feature of each can-
didate image. We sort the similarity and select the candidate with
the highest similarity score as the final output.

The description of the design is organized as follows. We first
introduce our high-level methodology and key insights in Section
3.2. The feature extraction of individual modality is given in Section
3.3. Section 3.4 explains the coordinated representation module in
detail. Finally, 3D pose estimation and similarity estimation are
discussed in Section 3.5.
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3.2 Design Methodology
The most critical task of Mission is to find a multi-modal feature
representation method that can effectively project RGB video and
radar point cloud into the same embedding space for similarity esti-
mation. As discussed in Section 2.2, RGB video and radar point cloud
of a person’s walking motion suffer from significant heterogeneity
in terms of representation and physical meaning. This makes the
conventional representation learning methods (e.g., metric learn-
ing) fail in our task. Our benchmark shows that directly training a
model with deep metric learning results in an unacceptable ReID
accuracy of 54% (more details in Section 5).

The key insight of our design is that we can explore the in-
herent synergy between RGB images and radar point clouds to
address their modality discrepancy. More specifically, RGB image
and radar point cloud of the same person contain highly comple-
mentary features of the person’s gait. Radar point cloud reflects 3D
characteristics of the target (e.g., height and stride length), which
provide cues to eliminate the depth ambiguity in 2D RGB images.
On the other hand, the fine-grained body shape obtained from the
person’s images can also enrich the sparse radar points and make
mmWave features more robust to noise and sparsity. By exchanging
the complementary information between two modalities, we can
unify their feature representation for similarity estimation.

To this end, we introduce a novel coordinated representation de-
sign (details in Section 3.4) that extracts and integrates the beneficial
radar features into original image features such that the augmented
features of 2D images can accurately predict the 3D pose of the
person. Simultaneously, it incorporates important image features
into radar point clouds to enhance radar 3D pose estimation. The
processes enrich and project both modalities into an identical em-
bedding space that represents 3D walking poses. Our experiment
shows feature exchange dramatically reduces joint location error
by 50% compared to methods with single-modal information. This
makes the features of identical subjects well-clustered in the em-
bedding space. Moreover, integrating the 3D human model for gait
recognition makes our design robust to the viewpoint variation be-
tween radar and camera. This is critical for Mission because radar
and camera deployed in the disjointed locations could capture the
person from different perspectives. To guide the coordinated rep-
resentation network to extract features that represent 3D human
models, we incorporate 3D pose estimation as an auxiliary task
(details in Section 3.5).
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In addition, we observe that the RGB and mmWave features of
different identities are inherently conflicted rather than complemen-
tary, and performing the aforementioned multi-modal coordinated
representation leads to very random results. To demonstrate this
observation, Fig.3 compares the 3D joint location error distribu-
tion in both complementary and conflicted cases. Integrating RGB
and radar features from different identities exhibits significantly
larger average errors (17.9cm vs. 8.4cm) and error variances (5.2cm
vs. 3.1cm). The amalgamated features cannot be clustered well in
the embedding space. This unique observation further helps us to
distinguish people with different identities.

3.3 Multi-Modal Feature Extraction
This section introduces the feature extraction from individualmodal-
ities (i.e., RGB images and Radar point cloud).

3.3.1 Vision Feature Extraction Module. To extract pertinent two-
dimensional gait such as body shape and gait cycle from the pro-
vided images, we employ a DNN illustrated in Fig. 4, which com-
prises two key components: ResNet and GRU. In particular, when
presented with a sequence of l RGB frames denoted as 𝐼1, . . . , 𝐼𝑙 , we
harness a ResNet-50 network [16] that has been pre-trained accord-
ing to [19]. The objective was to derive static features from each
frame, yielding representations 𝑓 𝑉1 , . . . , 𝑓 𝑉

𝑙
, where the superscript V

signifies the visual modality and 𝑓 𝑉∗ ∈ R2048. Notably, the ResNet’s
weights were shared across all frames to maintain consistency. To
align with the features obtained from the mmWave modality, we
employ a shared-weight Multi-layer Perceptron (MLP) to condense
the dimensionality of the derived features. This transformation
resulted in 𝐹𝑉∗ = MLP(𝑓 𝑉∗ ), where 𝐹𝑉∗ ∈ R256. Given the intuition
that a frame could benefit from prior pose information, we adopt a
similar strategy as presented in TCMR [9]. Once the static features
of all input frames are computed, we use a time encoder composed
of bidirectional Gated Recurrent Units (GRUs) that encode tempo-
ral features into the current frame. This approach acknowledges
the potential influence of past pose information on subsequent
frames, contributing to a comprehensive temporal understanding.
The output of the GRUs (denoted as 𝐹𝑉 ) is the ultimate output of
the vision feature extraction module. 𝐹𝑉 represents the 2D gait
characteristics. This feature can be used to estimate 2D pose in the
images but cannot accurately estimate 3D pose due to loss of depth
information (mentioned in Section 2.2). We will discuss in Section
3.4 that the coordinated representation module will augment 𝐹𝑉
into 3D gait features with the complementary depth information
extracted from radar point clouds.

3.3.2 RF Feature Extraction Module. We adopt PointNet [38] to
extract features from 3D Radar point cloud, which consists of a Base
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module and a Global module (depicted in Fig. 5). Base module oper-
ates on individual points, denoted as 𝑝𝑅𝑛,𝑡 = 𝑥𝑅𝑛,𝑡 , 𝑦

𝑅
𝑛,𝑡 , 𝑧

𝑅
𝑛,𝑡 , 𝑖

𝑅
𝑛,𝑡 , 𝑣

𝑅
𝑛,𝑡

within the point set 𝑆𝑡 of the 𝑡𝑡ℎ frame. Each point is independently
processed using a shared-weight MLP. Here, 𝑥 , 𝑦, 𝑧, 𝑖 , and 𝑣 respec-
tively stand for the coordinates, intensity, and velocity of the point,
while the subscript 𝑛 signifies the point’s index within the set and
superscript 𝑅 denotes Radar modality. The output of this encoding,
referred to as the “point feature”, is a high-level representation of
each point and is denoted as 𝑟𝑅𝑛,𝑡= MLP(𝑝𝑅𝑛,𝑡 ;𝜃𝑟 ), where 𝜃𝑟 is the
parameter set of the MLP layers.

Globalmodule aggregates the point features from each frame into
a singular frame feature, capturing comprehensive characteristics
of the gait (e.g., height and center of mass). Given the point feature
𝑟𝑅𝑛,𝑡 produced by the Base module for a specific frame, we employ an
MLP to transform it into a more refined representation, denoted as
𝑐𝑅𝑛,𝑡 = MLP(𝑟𝑅𝑛,𝑡 ;𝜃𝑐 ) and compile these point-level representations
into a holistic frame feature using attention. Let 𝐴() denote the
attention function that computes scores for each point. The frame
feature 𝑔𝑅𝑡 can be expressed as follows:

𝑔𝑅𝑡 =

𝑁∑︁
𝑛=1

𝐴(𝑐𝑅𝑛,𝑡 ;𝜃𝑎) × 𝑐𝑅𝑛,𝑡 (1)

where 𝑁 is the number of points in 𝑡𝑡ℎ frame and 𝜃𝑎 is the param-
eter of attention function. Note that the original PointNet uses a
max-pooling layer to aggregate frame features, which causes severe
information loss due to the sparsity of mmwave point clouds and
thus is replaced by attention. We feed 𝑔𝑅𝑡 the multi-layer Bidirec-
tional Long Short-Term Memory (BiLSTM) to further incorporate
the temporal relationship between consecutive frames. The final
global feature is denoted as 𝑓 𝑅𝑡 =BiLSTM(𝑓 𝑅

𝑡−1;𝑔
𝑅
𝑡 ; 𝑓

𝑅
𝑡+1;𝜃 𝑓 ), where

𝑓 𝑅
𝑡−1, 𝑓

𝑅
𝑡+1 is the global representation of the adjacent frame and 𝜃 𝑓

is trainable parameters to in BiLSTM. Finally, we concatenate the
global feature 𝑓 𝑅𝑡 to each point feature 𝑟𝑅𝑛,𝑡 to obtain augmented
point feature 𝐹𝑅 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑟𝑅𝑛,𝑡 , 𝑓 𝑅𝑡 ). 𝐹𝑅 is referred to as “point
feature” for short in the following sections, which will be the input
of coordinated representation in Section 3.4.

3.4 Coordinated Representation Module
The multi-modal feature extraction modules obtain two sets of
feature vectors for RGB and radar respectively. As mentioned in
Section 3.2, a multi-modal feature coordinated representation holds
the potential to mitigate modal discrepancies by exchanging com-
plementary features between different modalities. This section de-
lineates the high-level feature exchange mechanism followed by
details of coordinated representation network design.

 !,"!"
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Fig. 6. Pixel-point feature exchange, where 𝐴(𝑛,𝑚)
represents correlation between the 𝑛𝑡ℎ point in a radar

frame and the𝑚𝑡ℎ pixel in an image frame.

3.4.1 Feature Exchange Mechanism. As discussed in Section 3.2,
images and radar encompass complementary gait features. To har-
ness this complementarity effectively, we design an inter-modal
mutual attention mechanism that enables fine-grained feature ex-
change between two modalities. The feature exchange process is
visually illustrated in Fig. 6.

For RF→Vision exchange, each image pixel engages in inter-
modal attention to compute its correlation with every radar point.
The outcome of this attention process is the integration of the
most pertinent point features into the pixel’s representation. Corre-
spondingly, in the Vision→RF exchange direction, the inter-modal
attention mechanism focuses on the most relevant image pixels
to extract specific features (such as the shape of the specific body
part) and incorporate them into the corresponding radar point.
Recall that a unique challenge in our design (compared to conven-
tional multi-modal sensor fusion) is that radar and camera capture
different instances of the gait. Due to the lack of strict temporal
synchronization among radar and image frames, the most relevant
information of inter-modal attention might be distributed across
various frames of the other modality. To address this challenge, we
adopt the Non-local neural network (NLN) [34] structure during
feature exchange. This structure effectively handles long-distance
dependencies, enabling each pixel to gather valuable insights from
any radar frame and vice versa. We integrate NLN with inter-modal
mutual attention, which overcomes temporal asynchrony and en-
sures that the most relevant cross-modal information is effectively
harnessed in coordinated representation.

3.4.2 Coordinated Representation Network. As depicted in the mid-
dle of Fig. 7, in order to achieve cross-modal coordinated representa-
tion, the vision and RF features undergo inter/intra-modal attention
and two parallel Non-local networks (NLN) for Vision→RF feature
exchange and RF→Vision feature exchange respectively. Take the
RF→vision exchange process for example. The RF features 𝐹𝑅 are
fed into the vision NLN (the green arrow) with its spatiotemporal
correlation with the vision features 𝐹𝑉 calculated using inter-modal
attention (red dot). The details of inter-modal attention in an NLN
block are depicted on the right of Fig.7. We linearly transform a
vision feature 𝐹𝑉 and an RF feature 𝐹𝑅 into a query and key in an
embedding space using matrices𝑊 𝑅→𝑉

𝑞 and𝑊 𝑅→𝑉
𝑘

. The query
and key are then dot-product and normalized by a non-linear func-
tion 𝜎(e.g., softmax) to obtain the correlation between the vision
and RF feature. This inter-modal attention produces a matrix 𝑎𝑅→𝑉

that estimates the correlation between each pair of radar points
and image pixel, enabling feature exchange at a fine granularity.
Furthermore, to accommodate the long-distance dependency of
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two modalities, the correlations are calculated for radar points and
image pixels across different frames. The inter-modal attention
matrix for the Vision→RF feature (denoted as 𝑎𝑉→𝑅 ) is derived
similarly. The formal definition of correlation matrices is given in
equation 2.

𝑎𝑅→𝑉 = 𝜎 (𝑊 𝑅→𝑉
𝑘

𝐹𝑅 (𝑊 𝑅→𝑉
𝑞 𝐹𝑅)𝑇 )

𝑎𝑉→𝑅 = 𝜎 (𝑊𝑉→𝑅
𝑘

𝐹𝑉 (𝑊𝑉→𝑅
𝑞 𝐹𝑅)𝑇 )

(2)

In addition to inter-modal attention, we also introduce intra-
modal self attention to calculate the correlation between features
within single modal. Take the representation process of Vision as an
example, the vision NLN takes a sequence of vision features as the
input and performs intra-modal self attention (green dot in Fig.7) to
aggregate features between different frames within a gait cycle. The
advantage of doing so is that it generates a global context for better
expressing the gait features of the target. As Eq.3 illustrates, 𝐹𝑉
is linearly transformed into embedding space𝑊𝑉

𝑘
𝐹𝑉 and𝑊𝑉

𝑣 𝐹𝑉 ,
which represents the key and value of 𝐹𝑉 respectively. Then, these
feature vectors are dot-producted and normalized by a non-linearly
function 𝜎 (e.g. softmax) to get the intra-modal attention matrix
𝑎𝑉 . 𝑎𝑉 estimates the spatio-temporal correlation between frames
throughout the gait cycle. A similar process is also implemented in
RF modal, which outputs the intra-modal attention matrix 𝑎𝑅 .

𝑎𝑉 = 𝜎 [𝑊𝑉
𝑘
𝐹𝑉 (𝑊𝑉

𝑞 𝐹𝑉 )𝑇 ]

𝑎𝑅 = 𝜎 [𝑊 𝑅
𝑘
𝐹𝑅 (𝑊 𝑅

𝑞 𝐹𝑅)𝑇 ]
(3)

With the inter-modal and intra-modal attention matrices, we
extract and exchange the complementary information among vi-
sion features and RF features such that they are aligned in the same
feature space for similarity estimation. To incorporate complemen-
tary vision feature into the RF feature, we linearly transform the
vision feature 𝐹𝑉 embedding space with a matrix𝑊𝑉→𝑅 and then
multiple it by the inter-modal attention matrix 𝑎𝑉→𝑅 . This process
essentially select and aggregate the most relevant vision features
based on their correlations with a specific Radar point that are

estimated by inter-modal attention. In addition, the RF feature 𝐹𝑅 is
multiplied by with intra-modal attention matrix 𝑎𝑅 that aggregate
features across various Radar frames. The aggregated inter-modal
and intra-modal features are concatenated and the result is linearly
transformed by𝑊 𝑅

𝑦 and combined with the original feature 𝐹𝑅 by
element-wise addition, which finally produces the augmented RF
feature (denoted as 𝑌𝑅 ). Corresponding, the vision feature 𝐹𝑉 is
augmented with the complementary RF features following a simi-
lar process, which augmented vision feature 𝑌𝑉 . This cross-modal
feature coordinated representation is formally given in equation 4.

𝑌𝑉 =𝑊𝑉
𝑦 [𝑎𝑉𝑊𝑉

𝑣 𝐹𝑉 ;𝑎𝑅→𝑉𝑊 𝑅→𝑉
𝑣 𝐹𝑅] + 𝐹𝑉

𝑌𝑅 =𝑊 𝑅
𝑦 [𝑎𝑅𝑊 𝑅

𝑣 𝐹𝑅 ;𝑎𝑉→𝑅𝑊𝑉→𝑅
𝑣 𝐹𝑉 ] + 𝐹𝑅

(4)

3.5 Multi-task Supervision
As discussed in Section 3.4, our coordinated representation struc-
ture facilitates the exchange of complementary gait features be-
tween two modalities. During model training, it is crucial to guide
the network to efficiently learn and transfer these complementary
features. Additionally, since our primary objective is person re-
identification (ReID), the model must not only capture multi-modal
gait features but also distill the most discriminative elements from
these features for accurate identification. This section introduces a
multi-task learning framework designed to achieve both of these
goals simultaneously.

3.5.1 Pose Estimation Network. We discussed in Section 3.2 that by
exchanging the complementary information between RGB images
and radar point cloud, we can obtain a unified feature representation
that accurately represents 3D human gait. To assist the neural net-
work in learning this unified feature representation during model
training, we incorporate the 3D pose estimation task. It uses the
coordinated representation (obtained in Section 3.4) to predict a se-
quence of 3D skeletons described by the 3D coordinates of key joints
of the person during walking. We choose 3D skeleton estimation as
an auxiliary task to supervise feature extraction and coordinated
representation based on the domain knowledge about gait. First, 3D
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Fig. 8. Similarity Estimation via Deep Metric Learning. C-R
Module refers to the coordinated representation module,
which is responsible for the coordinated representation of
both positive and negative samples with the anchor sample.

pose is widely used as a highly effective representation of human
gaits for person identification [26]. In addition, 3D pose is invariant
to viewpoint of sensors. By projecting both RGB images and radar
point clouds into the 3D pose representation, the model can handle
the viewpoint difference between radar and camera that are de-
ployed in the non-overlapping areas (a critical challenge discussed
in Section 2.2). More specifically, for both augmented vision and RF
features (i.e., 𝑌𝑉 and 𝑌𝑅 ), we use a fully-connected network (FC) to
predict human skeleton point location 𝑆 = {(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) |𝑖 = 1, ..., 𝑀},
where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 represent the coordinate of the 𝑖𝑡ℎ point and 𝑀 is
the number of body skeleton points. Note that pose estimation and
ground truth of pose are only required during the training stage.
For the inference, 𝑌𝑉 and 𝑌𝑅 are only used by deep metric learning
networks for ReID. The Loss function of pose estimation is to min-
imize the error between predicted and ground truth positions of
skeleton joints. Given that the human skeleton contains𝑀 joints,
we minimize the Mean Squared Error (MSE) loss:

𝐿𝑝 =
1
𝑀

𝑀∑︁
𝑚=1

| |𝑝𝑚 − 𝑝𝑚 | | (5)

where 𝑝𝑚 , 𝑝𝑚 are the predicted position and corresponding ground
truth of𝑚𝑡ℎ joint and | | ∗ | | denotes the L2-norm.

3.5.2 Similarity Estimation via Deep Metric Learning. Due to the
heterogeneity of the two modalities, it is difficult for traditional
metric learning to project data from different modalities into the
same embedding space and cluster them closely. However, our co-
ordinated representation module effectively eliminates the modal
discrepancy, so we perform deep metric learning on the augmented
vision and RF features rather than directly performing on the ex-
tracted features of individual modality. As shown in Fig.8, we feed
𝑌𝑉 and 𝑌𝑅 (the output of coordinated representation module) into
a deep metric learning network. Deep metric learning focuses on
extracting high-level gait representations that are robust to tem-
poral misalignment between camera and radar data, variations in
frame lengths, and minor differences in gait instances (as discussed
in Section 2.2). Note that 𝑌𝑉 and 𝑌𝑅 contain the features of the
entire gait cycle. To highlight the most discriminative features for
ReID, we use an attention module to calculate the importance of
each frame and aggregate the features in the frames among the
entire cycle by a weighted summation.

Loss of similarity estimation. The deep metric learning min-
imizes the distance between the features from the same identity
while maximizing the distance between features from different sub-
jects. As shown in Fig.8, we employ triplet loss [27] as the loss
function, where each input of the triplet loss function is a triple
consisting of anchor, positive, negative instances which are denoted
as < 𝑔𝑎, 𝑔𝑝 , 𝑔𝑛 >. The objective function is designed as follows:

𝐿𝑠 =𝑚𝑎𝑥 (𝐷 (𝑔𝑎, 𝑔𝑝 ) +𝑚𝑎𝑟𝑔𝑖𝑛 − 𝐷 (𝑔𝑎, 𝑔𝑛), 0) (6)

where𝐷 (𝑔𝑎, 𝑔𝑝 ) is the euclidean distance between embedding of an-
chor and positive samples.𝐷 (𝑔𝑎, 𝑔𝑛) is the distance between embed-
ding of anchor and negative samples.𝑚𝑎𝑟𝑔𝑖𝑛 is a hyper-parameter,
and by adjusting the value of𝑚𝑎𝑟𝑔𝑖𝑛, the distance between the an-
chor and the positive samples can be ultimately reduced while the
distance between the anchor and the negative samples is increased.
The total training objective is:

𝐿 = 𝛼𝐿𝑝 + 𝛽𝐿𝑠 (7)

where 𝛼 and 𝛽 are hyper parameters that adjust the contribution
of different tasks. The whole framework is trained end-to-end.

4 IMPLEMENTATION
This section presents the implementation of our design including
the experiment devices and data acquisition process. We released
Mission at https://github.com/EverRaynor/Mission.

4.1 Experiment Platform
4.1.1 mmWave Radar Platform. We utilized the commercial radar
IWR6843-BOOST [2] for data acquisition. It operates within the
frequency range of 60 GHz to 64 GHz, corresponding to a wave-
length of 4mm. The device consists of three transmitting antennas
and four receiving antennas, collectively providing a 60-degree
field of view (FoV) in both azimuth and elevation, with an angu-
lar resolution of approximately 15 degrees. We use the standard
frequency-modulated continuous wave (FMCW) processing chain
provided by TI to generate a 3D point cloud. We include the detailed
configuration parameters of the radar device below for reproducibil-
ity. The radar transmits 10 frames per second, each comprising 32
chirps. Each chirp begins at 60.065 GHz, with a bandwidth of 3194.88
MHz. The frequency slope is fixed at 12.5 MHz/microsecond.

4.1.2 Camera Platform. RGB image data of gaits are collected with
Azure Kinect DK, equipped with a 12-megapixel full HD camera.We
set the camera frame rate to 15 FPS and the image resolution to 720p,
which simulates the common configuration in re-identification sce-
narios. In addition, we use the depth sensor of Kinect to obtain the
ground truth joint positions for 3D pose estimation. Body Tracking
SDK [4] can track multiple humans with Azure Kinect DK, return-
ing 32 joint skeletons for each human in the field of view. It is
noteworthy that the depth camera in our design is only used in the
training stage and is not required during the operation (inference).
In our evaluation, depth features are removed from the data. The
trained model can estimate the similarity between 2D RGB images
(without depth information) and mmWave point clouds.
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Fig. 9. The cohort stats regarding the age and height.

4.2 Data Acquisition
We recruited 58 participants (36 males, 22 females) aged 19 to 51
years, with heights ranging from 152 cm to 187 cm, for data col-
lection. Figure 9 presents the cohort statistics for age and height,
both of which significantly influence gait patterns. Our experiments
received approval from the Institutional Review Board (IRB).

Mission assumes that radar and camera systems are installed in
separate scenes, with some areas designated as camera-restricted
and others as camera-allowed. To study the re-identification across
different scenes, we conducted data collection in three different
scenarios: classroom, corridor, and hall, as shown in Figure 10. Our
data collection equipment was positioned at one end of the test
field, with the mmWave radar and camera placed at heights of 0.85
meters and 0.86 meters, respectively. Volunteers walked towards
the equipment from the opposite end, with each participant walking
at least 6 meters in each experiment.

To ensure that the data contain a variety of viewpoints for camera
and radar, participants were instructed to follow various walking
routes (indicated by yellow dashed lines in Fig.10(a) and 10(b)). This
results in varying angles for sensors to view the subject (denoted
as view angles) which range from 0° to 60°. This approach enabled
us to capture instances of a person from varying perspectives, sim-
ulating real-world sensing scenarios. Due to natural variations in
walking speed, the duration of radar capture varies between 4 to 5
seconds for each individual. To account for the variation in the data
collection, each participant repeated a walking task 20 times. We
integrated the multi-modal data collection into the Robot Operating
System (ROS).

5 EVALUATION
In this section, we discuss the performance evaluation of our sys-
tem. We begin with evaluation methodology, which covers the
training and testing procedures, evaluation metrics, and compet-
ing approaches (Section 5.1). The overall performance results are
presented in Section 5.2, followed by detailed evaluations of each
critical design component in Section 5.3. Finally, we analyze the
impact of various factors on system performance in Section 5.4.

5.1 Evaluation methodology
5.1.1 Overview. We utilized the configuration detailed in Section
4 to collect a comprehensive dataset consisting of 2000 records of
radar and RGB data from 58 different subjects. For a systematic
assessment of identification performance, we constructed two sep-
arate datasets. The first dataset comprises over 1800 records, each
corresponding to a single individual present in the field of view
at a given time. To explore scenarios with multiple subjects, we

also assembled a multi-person dataset, consisting of 200 records
captured when two individuals are simultaneously within the FoV.

During the evaluation, these records will be carefully separated
to comprehensively produce various cross-modal re-identification
scenarios. For example, we separated training and testing samples
according to their identity to examine if Mission can identify un-
seen subjects during the model training (Section 5.4.2). Moreover,
to test the feasibility of serving cameras and radar installed in
disjointed areas, we evaluated situations where the query and can-
didates were acquired from different scenes (Section 5.4.3). Finally,
we studied the impact of varying viewpoints of both radar and
camera (Section 5.4.1), the size of the gallery (Section 5.4.6), the
number of records of each subject (Section 5.4.4), and the duration
of the snippet (Section 5.4.5) on the ReID accuracy.

5.1.2 Model Setting and Model Training/Testing. The details of the
model, training, and testing procedure are as follows. For RF feature
extraction, we implementMLPs in PointNet, the layer sizes of which
are (5,12,24,48,64). For vision feature extraction, we resize the image
from 1080 × 720 to 224 × 224 for training. We implement the NLN
in coordinated representation using NONLocalBlock [34] with dot-
product. In alignment with the prevalent approach adopted by
various cross-modal ReID studies in computer vision [5, 15, 19],
we use 75% of the data records collected from each subject for
model training, and the remaining 25% serve as the testing set. In
addition, we evaluated the effectiveness of the design in unseen
subjects by dividing training and testing data according to subjects’
identities. The learning rate is set to 0.0002 and the batch size is
16. The number of training epochs is 50000. The hyper-parameter
𝑚𝑎𝑟𝑔𝑖𝑛 assigned to the loss function in Equation 6 is set to 0.3,
and 𝛼, 𝛽 mentioned in Equation 7 is set to 1 and 2 respectively. We
implement our deep learning model in PyTorch and train the model
with NVIDIA RTX 3090.

5.1.3 Evaluation Metrics. Our evaluation adopts the cumulative
matching curve (CMC), a widely adopted metric in ReID studies
[5, 22]. Specifically, for each radar query, we calculate the similarity
between the query and every candidate RGB record. We report the
top-N accuracy, which is defined as the percentage of test cases
where the RGB record of the target person is ranked among the top
N positions among all the RGB records in the test. N varies from
1 to 10 in our evaluation given the number of our volunteers. In
addition, we jointly train the ReID network with a pose estimation
network to extract complementary gait features. To evaluate the
effectiveness of the strategy, we examine the accuracy of pose
estimation measured by Average Joint Localization Error (AJE)
which is the average Euclidean distance between the predicted
skelection key points (i.e., joint locations) and their ground truths.

5.1.4 Baseline. Mission is the first cross-modal ReID framework
designed for RGB camera and radar modalities. To evaluate it, we
introduce several baseline comparisons. First, we adopt a recent
cross-modal ReID approach originally developed for RGB-D and
radar data and apply it to our RGB-radar dataset. Additionally,
to further highlight the effectiveness of our approach in tackling
cross-modal challenges, we implement four representative (Re)ID
methods from recent literature, which were originally designed
for either mmWave or RGB. These baselines individually extract
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Fig. 10. Implementation scenarios.

features from RGB and radar using various network models and
assess similarity using classical deep metric learning techniques.
HMR + Cross Radar/RGBD (HRD). We implemented [5] as a
cross-modal baseline in our evaluation. This work was originally de-
signed for cross-modal ReID between mmWave and RGB-D images.
To fill the gap between RGB and RGB-D. We first predict the depth
images from RGB images using the human mesh estimation method
(HMR [17]) and then the predicted depth image and radar point
cloud are processed by the end-to-end pipeline of [5] to estimate
the similarity.
PointNet + GaitPart + LSTM(PGL) [5, 8, 13]. We use PointNet
[25] and GaitPart [13] to extract features from radar points and RGB
images respectively. Both RF and vision features are fed into LSTM
to further exploit gait temporal patterns. We perform deep metric
learning with a triplet loss to project features of different modalities
into the same embedding space and estimate their similarity.
Voxelization + 3DCNN + GaitPart + LSTM (VCGL) [42]. We
replace PointNet in PGL with voxelization + 3DCNN [42], a differ-
ent feature extraction model for radar points. LSTM and average
pooling are then utilized to obtain the final embedding. We also
use deep metric learning with a triplet loss to achieve similarity
estimation.
DGCNN + GaitPart + LSTM(DGL) [35].We implement another
radar feature extraction method based on DGCNN, a graph CNN
that extracts features from radar points. It consumes the point cloud
directly and applies the proposed EdgeConv which takes 𝑘 adjacent
points as graph structure to extract local features. The rest part is
the same as VCGL.
PointNet + TCMR + LSTM(PTL) [9].We employ PointNet and
TCMR in Section 3.3 for RF and vision feature extraction. Distinct
from our cross-modal feature coordinated representation, the base-
line directly performs metric learning on RF and vision features
with a triplet loss, attempting to align the heterogeneous features
into the same embedding space and estimate their similarity.

5.2 Overall Performance
This section presents the overall ReID accuracy of Mission. We
report the single-person accuracy (i.e. only one subject appears in
the radar FoV) and multi-person accuracy (i.e. multiple subjects
appear in the radar FoV).

5.2.1 Single-person ReID accuracy. As Fig.11(a) shows, our system
achieves 85.42% top-1 accuracy, 87.65% top-3 accuracy, and 90.31%
top-5 accuracy out of 58 volunteers in single-person scenarios. Our
method significantly outperforms the cross-modal ReID baseline

(HRD) with a Top-1 accuracy of 55.6%. This is mainly because the
baseline directly estimates the depth mesh of the subject from RGB
images. Suffering from depth information loss, the estimation intro-
duces non-trivial errors. In contrast, our method effectively exploits
the complementary features from mmWave radar to enhance the
accuracy of 3D gait estimation. In addition, our approach achieves
at least 32% higher top-1 and 14% higher top-5 accuracy than the
baselines transplanted from single-modal ReID. The results indi-
cate that our design effectively mitigates the modal discrepancy
between 2D RGB and radar point cloud.

Recall that the coordinated representation learning is guided
by 3D pose estimation. To further illustrate the effectiveness of
the strategy, we also analyze the result of the auxiliary task. We
compare the average joint localization errors (AJE) with classic pose
estimation methods using single modality (mmMesh [38] for radar
and TCMR [9] for camera). As Table.2 shows, the original TCMR
causes a 14.02cm error due to the depth ambiguity of RGB image
while our method brings it down to 4.62cm, which is attributed
to the inter-modal attention design that incorporates 3D cues into
the vision feature. It also improves the robustness of radar pose
estimation, limiting the error within 3.9cm. The findings indicate
that Mission adeptly facilitates the exchange of complementary
features between 2D images and 3D radar point clouds. This process
effectively aligns heterogeneous features from different modalities
into the same embedding space.

5.2.2 Multi-person ReID accuracy. As Fig.11 shows, Mission re-
tains robustness in multi-person ReID with a top-1 accuracy of
84.77%, top-3 accuracy of 87.01%, and top-5 accuracy of 89.64%.
This outcome substantiates that our method can effectively manage
real-world scenarios involving multiple individuals within radar
Fields of View (FOVs). It further underscores the unique advantage
of mmWave ReID over the WiFi-based solution [21], particularly in
its ability to recognize multiple individuals simultaneously in the
same scene.
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5.3 Effectiveness of Design
5.3.1 Ablation study. In Section 3, several critical designs were
introduced. To demonstrate their effectiveness, we measure the
performance of the system when specific components are removed.
We conduct experiments in the following four settings and ReID
accuracy is shown in Fig.12.
Full version (Full): All the designs in Section 3 are enabled.
w/o coordinated representation module (noFU): The similarity
is calculated without feature exachange using the coordinated rep-
resentation module (Section 3.4). This setting aims to emphasize
the significance of inter-modal attention and NLN in eliminating
modality discrepancy between radar and RGB.
w/o auxiliary task(noAT): This setting removes the supervision
of auxiliary task (i.e., pose estimation).This setting shows the ef-
fectiveness of using 3D pose prediction to assist the network in
learning how to extract and exchange meaningful gait features.
w/o triplet loss(noTL): The training loss is replaced by contrastive
loss with a two-tuple input. Specifically, we train the network with
a pair consisting of one sample from each modality (denoted as
<r,v>). The loss function used in contrastive loss is defined as:

𝐿𝑐 = 𝑦𝑑2 + (1 − 𝑦)𝑚𝑎𝑥 (𝑚𝑎𝑟𝑔𝑖𝑛𝑐 − 𝑑, 0)2 (8)

where𝑚𝑎𝑟𝑔𝑖𝑛𝑐 is a hyper-parameter, 𝑑 represents the distance of
feature embedding of r and v. 𝑦 is the label indicating whether 𝑟
and 𝑣 belong to the same identity(𝑦 = 1) or not(𝑦 = 0). This setting
aims to evaluate the importance of using triplet loss during the
training.

Fig.12 presents the results. As anticipated, the comprehensive
version of Mission delivers the best performance among all config-
urations, thereby validating the effectiveness of various designs in
enhancing overall performance. In the absence of a coordinated rep-
resentation module, the top-1 accuracy of noFU declines to 64.8%,
underscoring the importance of mutual attention across modalities.
Moreover, the most significant reduction in accuracy is observed in
noAT (a loss of 30.4% in top-1 accuracy). Therefore, we surmise that
3D pose estimation plays a pivotal role in our design, facilitating
complementary feature extraction and feature exchange between
RF and vision. Lastly, the decrease in accuracy in noTL indicates
that the triplet loss is more effective than the contrastive loss.

Models mmMesh TCMR Mission

AJE(cm) 4.432 14.021 3.902(RF)/4.624(Vision)
Table 2: Overall performance of pose estimation.

5.4 Sensitivity Analysis
5.4.1 Impact of view angles. Mission provides ReID for radar and
camera installed in the non-overlapping areas. Two sensors might
capture people from different view angles, causing significant chal-
lenges for cross-view 2D image ReID in conventional camera so-
lutions [7]. Mission harnesses the complementarity of radar to
augment 2D vision into the enhanced features that represent 3D
skeletons, which are more resilient to the impact of view angles. We
evaluate the performance of our design from various view angles.
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Fig. 15. Evaluation of various view angles.

View angles of RGB cameras. As depicted in Fig.10(a), to gener-
ate RGB images from various viewpoints, volunteers are instructed
to traverse along a set of pathways with offsets ranging from 0 to
1.2 meters from the camera-aligned line, referred to as the mid-line.
This procedure modifies the angle between the volunteers and the
device from 0◦ to 60◦ at intervals of 15◦. Conversely, volunteers
proceed directly toward the mmWave radar along the mid-line.
Fig.13 illustrates that our methodology maintains a 75% top-1 and
81% top-5 accuracy at a substantial angle of 45◦. This result shows
that our model effectively extracts gait features that are invari-
ant to the viewpoint of the camera. The accuracy descends to 65%
(top-1) when the angle escalates to 60◦. This is because when volun-
teers walk with a large offset from the mid-line, they are no longer
entirely within the camera’s Field of View (FoV).
View angles of mmWave radars.We further assess the influence
of radar viewing angles. In this experiment, volunteers are directed
to approach the radar along a variety of trajectories with offsets
ranging from 0 to 1.2 meters from the mid-line. It should be noted
that in this experiment, volunteers walk directly toward the RGB
camera. Fig.14 demonstrates sturdy performance across a range
of view angles from 0◦ to 45◦. This again proves that our coordi-
nated representation and the supervision using 3D pose estimation
effectively extract 3D gait features that can deal with viewpoint
variation. However, when the angle exceeds 60◦, the radar expe-
riences self-occlusion of the subject in addition to a significant
decline in angular resolution and signal strength, resulting in a
performance drop. This outcome suggests that the deployment of
multiple radar sensors to capture observations from assorted view
angles could potentially enhance overall accuracy.

5.4.2 Unseen-subject performance. Mission doesn’t require col-
lecting and labeling mmWave data from the individuals to be rec-
ognized in advance. For example, it recognizes intruders that don’t
appear during model training. This benefits from our designs. We
adopt deep metric learning to learn a metric such that the subjects
with similar gaits are close in the feature space while different gaits



Mission: mmWave Radar Person Identification with RGB Cameras SenSys ’24, November 4–7, 2024, Hangzhou, China

are distant. Therefore, the model does not memorize the gaits of
the people in training data but uses the training data to learn the
optimal metric to estimate similarity. Moreover, we use 3D pose
estimation as the auxiliary task which makes the network more
generalizable to the varying environments and sensor setup. To
test the performance of unseen subjects during training, we di-
vide the dataset into two parts based on volunteers’ identities for
training and testing respectively, and the volunteers’ identities are
not duplicated to simulate real-world scenarios. Specifically, dur-
ing the training phase, we selected all records from 40 out of 58
volunteers as the training set, while the remaining 18 out of 58
volunteers were designated as the test set. This approach ensures
that Mission encounters previously unidentified volunteers during
the testing phase. As shown in Fig.18, the top-1 accuracy in unseen-
subject scenarios maintains 84.9%, indicating robust generalization
of Mission to novel subjects.
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5.4.3 Cross-scene performance. Mission exploits geographically
dispersed cameras, which potentially capture candidates in a variety
of environments. To assess the model’s generalization capability to
diverse environments, we juxtapose the results with RGB videos
captured in three distinct scenes as depicted in Fig.10. Specifically,
during the training phase, we utilize 70% of the data collected from
Scene 1 as the training set. In the testing phase, we select the
remaining 30% of the collected radar records (excluding those in
the training set) from Scene 1 as the query set, while the gallery
set comprises RGB records from across three different scenes. We
randomly select a radar record from the query set as the query and
build different RGB galleries for ReID based on the scene. For Scene
1, the remaining 30% of the collected RGB records were used as
the gallery, representing intra-scene re-identification. Scenes 2 and
3 employed all RGB records collected from Scene 2 and Scene 3,
respectively, representing cross-scene re-identification.

As illustrated in Fig.19, alterations in scenes exert a negligible
impact on the outcomes, with a mere 4% deviation in top-1 accu-
racy. Given that Mission primarily focuses on the human body’s
motion across various scene backgrounds, it consistently maintains
high performance in cross-scene experiments. This evaluation im-
plies that our design maintains robustness amidst environmental
changes and our feature exchange mechanism effectively aggre-
gates individual features that remain unaltered by the environment.

5.4.4 Impact of the number of records. In real-world scenarios, the
public camera network may capture an individual an indefinite
number of times. We adjust the number of records for each indi-
vidual in the RGB database and scrutinize the impact on accuracy.
Fig.16 illustrates the accuracy ranging from top-1 to top-10. We
discern that an increase in the number of RGB records for each
candidate marginally enhances the ReID accuracy. This can be at-
tributed to the larger number of records, which typically helps

mitigate the randomness of gait, such as minor variations in step
length. As a result, gait recognition becomes more robust.
5.4.5 Impact of the number of gait frame. A typical gait cycle lasts
approximately 1 second. However, there can be extreme cases where
only fragments of gait cycles are captured, for instance, due to
obstructions. To investigate the impact of duration, we conduct our
evaluations repeatedly while altering the number of frames from 5
to 20, corresponding to 0.5 to 2 cycles respectively. With 20 frames
(approximately 2 seconds), the top-1 and top-5 accuracies are 86.9%
and 90.3% respectively. Remarkably, even with only 5 frames (0.5
seconds) in total, the model achieves a top-1 accuracy of 76.1%,
showcasing its robustness even in challenging scenarios

5.4.6 Impact of the number of candidates. The quantity of candi-
dates present in the RGB gallery has a direct impact on performance.
Our comprehensive performance is assessed with 58 subjects, sim-
ulating the number of candidates in typical scenarios. However,
in certain specific scenarios , the number of candidates may no-
tably diminish. Hence, we further evaluate scenarios where the
RGB dataset comprises varying numbers of subjects in public areas.
Fig.20 reveals that the accuracy of our method gradually declines
as the number of candidates rises. For instance, the top-1 accuracy
reaches 91% when identifying among 10 different subjects. When
the number of candidates surges to 58, the top-1 accuracy remains
84%. It is important to note that the top-5 accuracy consistently
remains above 90%, which validates that our method can deliver
substantial accuracy for varying quantities of candidates.

6 RELATEDWORK
6.1 Single-modal Person Identification
Both vision-based and RF-based person identification are exten-
sively studied in the literature. In computer vision, researchers have
delved into the distinctive gait patterns exhibited by individuals
as a promising biometric identifier [13, 24, 31]. While effective,
cameras can give rise to privacy concerns and struggle with poor
light conditions. RF-based techniques (e.g., Wi-Fi and radar) are
recently proposed for camera-restricted scenarios. [28, 33] WiFi-
based method [41] analyzes the CSI spectrum produced by a single
walking person for identification. MU-ID [39] uses raw radar signal
to recognize up to four people simultaneously. mID [42] achieves si-
multaneous tracking and recognition of two subjects by voxelizing
point clouds. A common limitation shared by these methodologies
is their reliance on pre-collected data and labels, thereby rendering
them unsuitable for scenarios involving previously unseen individ-
uals. In contrast, our approach introduces cross-modal visual-RF
identification, utilizing the strengths of both modalities.

6.2 Cross-modal Person Identification
Cross-modal ReID is an emerging topic that associates subjects
detected by distinct types of sensors. The existing body of work
predominantly concentrates on ReID across varying camera types,
including RGB-D and RGB images [14, 18], RGB and infrared im-
ages [10, 36, 40] and RGB images with different resolution [23].
XModal-ID [21] is the prior work that achieves ReID between cam-
era and Wi-Fi by analyzing the simulated CSI from video and real
WiFi CSI. However, XModal-ID’s capabilities are constrained by
the limitations of Wi-Fi resolution, thereby confining its utility to
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single individual identification. In contrast, our proposed system
excels by enabling the simultaneous identification of multiple in-
dividuals. Cao et.al [5] proposed ReID between RGB-D cameras
and radars. Although effective, it necessitates the deployment of
additional RGB-D cameras (specialized cameras with depth sen-
sors, e.g., Kinect [4]), leading to additional hardware deployments
and limited sensing ranges (typically≤ 10m). Our system, in com-
parison, capitalizes on the widespread availability of regular RGB
cameras (e.g., existing surveillance cameras). Technically, radar and
RGB-D cameras both capture 3D features of human gaits, so [5]
focuses on associating 3D point clouds with different granularity.
In contrast, our design addresses the unique challenge of dimension
discrepancy between 2D RGB images and 3D radar point clouds.

6.3 Multi-modal Data Fusion
Human sensing using RGB cameras has achieved impressive per-
formance, but these systems are vulnerable to harsh environmental
conditions. In contrast, mmWave radars have gained attention as
a sensor modality that operates reliably in all weather conditions.
However, they are hindered by issues such as signal leakage and
multi-path effects, which complicate accurate perception. To over-
come the limitations of individual sensors, many studies have ex-
plored multi-modal data fusion for tasks such as object detection,
tracking, and identification [6, 12, 37]. For example, Millieye [29] in-
troduced a lightweight system that fusesmmWave radar and camera
data to enable robust object detection. However, these approaches
typically require collecting multi-modal data simultaneously from
the same location. In contrast to conventional multi-modal fusion,
our work focuses on establishing correspondences between individ-
uals captured by different sensor modalities at different times and
locations. Unlike traditional setups that collect co-located data, our
scenario involves video and radar point clouds gathered at distinct
times and from separate, non-overlapping positions. This results
in query (radar) and candidate (RGB) data representing different
gait instances. Such a setup introduces unique technical challenges,
including temporal misalignment, viewpoint differences, and subtle
variations in gait across instances. Addressing these challenges is
the primary contribution of our work.

7 DISCUSSION
Scalability in a large population. Mission reidentifies a person
detected by radar in the widely deployed RGB camera, which signif-
icantly improves the scalability of person identification techniques
with radar. The proposed method provides a metric to estimate the
similarity of gait in RGB video and radar point clouds so it can be
extended to reidentify multiple people simultaneously. To adopt

Mission in large population scenarios, we can use the proposed
method to estimate the similarities between each pair of radar and
RGB candidates. Restricted by the low-level configurations of the
current mmWave radar (e.g., the maximum number of points per
frame), we use a two-person experiment to demonstrate the fea-
sibility of multi-person ReID (Section 5.2.2). In our future work,
we will enhance point cloud generation from raw signal [20] to
evaluate our design on a greater number of people. Scaling the
techniques in a very large population could incur two challenges.
First, gaits are soft biometrics (compared to the face and finger-
print). A large number of candidates will impact the Top-1 ReID
accuracy. To handle the situation where a person could be misiden-
tified as two different entities, our design provides the users with
Top K candidates (the K most similar candidates). This offers the
user several suggestions rather than a single result. We believe this
will be useful (e.g., for investigators to narrow down the search
space). Furthermore, simultaneously reidentifying multiple subjects
increases the computation complexity. We plan to investigate the
computation cost in our future work.
Generalization to various activities. Our design utilizes gait
characteristics (i.e., the unique patterns of walking) as key features
for identification. In real-world scenarios, subjects may engage in a
variety of activities. To ensure that the data used for identification
corresponds to walking, we can incorporate activity classification
models, such as those from [30], to first detect walking segments
and then extract the relevant data for re-identification (ReID). Rei-
dentification during other activities (e.g., running) or when the
subject is stationary presents additional challenges for Mission,
which we plan to explore in future work.

8 CONCLUSION
This paper proposes a novel cross Vision-RF identification with
RGB cameras and mmWave radar. To address the modal discrep-
ancy between different sensors, we present a novel heterogeneous
feature representation method based on self-mutual attention. Fur-
thermore, Mission also exploit a multi-task learning architecture
to help extract more representative features. It is suggested that
Mission demonstrates the feasibility of cross Vision-RF identifica-
tion and illustrates the potential for leveraging widely deployed
RGB cameras in public areas for large-scale recognition and track-
ing across both camera-allowed and camera-free zones.
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