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Abstract—Autonomous driving requires vehicles to achieve fine
detection of objects in the surrounding environment, especially
living pedestrians. Nevertheless, in real world road environments
there are living pedestrians and roadside portrait billboards.
Existing vision-based object detection technologies fail to ac-
curately distinguish living pedestrians from human figures. As
an important sensor of autonomous driving system, mmWave
radar has extra help to detect living pedestrians. In this paper,
we extract the radar cross section (RCS) of the object from
the low-cost mmWave radar signal as a distinguishing feature
between living pedestrian and portrait billboard. Based on this
observation, we propose a feature fusion network of mmWave
radar and computer vision based on attention mechanism, and
detect living pedestrians from fusion features. We implement the
design with commodity mmWave radar IWR6843ISK-ODS and
RGB camera Logitech Pro C920. The evaluation results show
that our method effectively detects living pedestrians with an
mAP of 97.7% and outperforms existing studies.

I. INTRODUCTION

Achieving full autonomous driving requires vehicles to have
fine-grained perception capabilities while being robust in the
complex environment. Pedestrian detection is especially im-
portant among perception tasks. Failing to identify pedestrians
could lead to severe traffic accidents (e.g., a pedestrian being
hit and killed in Uber’s autonomous driving test [1]). On
the other hand, misidentifying non-pedestrian objects as a
pedestrian could also cause non-trivial issues. Specifically, in
addition to living pedestrian targets, roadside advertisements
and car body advertisements with portraits widely exist in
the road traffic environment. These false pedestrian targets
will interfere with the autonomous driving system, and thus
misguide vehicles to adopt wrong control strategies such as
unnecessary emergency braking, threatening road traffic safety
and reducing the traffic efficiency (e.g., create traffic jam).
Tesla, for example, was reported to misidentify human figures
in car body advertisements and give misleading warning to the
driver [2]. Therefore, it is of great significance for the sensors
of a vehicle to reject these false positives and accurately
distinguish real living pedestrians from these interference.

In commercial vehicles, RGB camera and mmWave radar
are most widely equipped sensors for object detection [3, 22].
Camera provides rich visual information, allowing accurate
localization of the objects in the image. However, using visual
features to perform classification or segmentation are prone

*Shuai Wang is the corresponding author.

to errors when subjects are visually similar. As a result, it is
challenging for a camera to distinguish living pedestrians from
portrait billboards or portraits printed on car body, especially
when the subject is in distance and shows up with only a few
pixels in the image. In contrast, a radar sensor uses mmWave
RF signal for detection and thus the result is not affected by
visual interference (e.g., it works in harsh light condition, fog
and rain). In addition, it has a superior capability of detecting
subjects in a long distance. Yet, radar point clouds are sparse,
noisy and have a significant lower angular resolution than
camera images. As a result, it cannot capture the appearance
of subjects as the clue for classification.

Motivated by the need for a robust pedestrian detection
and complementary natures of camera and radar, this work
proposes the first pedestrian liveness detection design through
the fusion of mmWave radar and camera sensor. The key
difference of our proposal from the previous mmWave and
camera fusion designs [3, 14] is that we exploit Radar Cross
Section (RCS), i.e., the object’s ability to reflect signal as the
key feature for classification rather than the absolute posi-
tion or signal strength utilized in previous designs. Through
a measurement study on the commodity radar device, we
observe that the RCS value of a real living pedestrian is
dramatically different from these interfering objects (e.g.,
portrait billboards) due to the distinctions in shape, material
and reflection characteristics of the skin. In addition, compared
to absolute signal strength which suffers from ambiguity, the
RCS of a living pedestrian is consistent over a long range
and across various angles, making it superior for classifying
objects in distance.

Based on the above observation, we further propose a novel
multi-modal neural network design that fuses the radar RCS
with visual clues from camera for pedestrian liveness detec-
tion. More specifically, we extend YOLOv3, the state-of-the-
art image-based object detector to support multi-modal inputs
and feature extraction, and dynamically integrate the RCS
features with visual features through attention mechanism.

To summarize, our work makes the following contributions:

o We present the first pedestrian liveness detection design

using mmWave radar and camera, enhancing the robust-
ness of autonomous driving perception algorithm against
visual interference.

¢« We propose a novel design that exploits the mmWave

radar RCS feature of targets and a new neural network
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for radar and image feature fusion.

e« We implement our design with commodity mmWave
radar (e.g. IWR6843ISK-ODS) and RGB camera (e.g.
Logitech Pro C920). We evaluate the system in four
different scenarios and the results demonstrate that our
design is highly accurate in pedestrian liveness detection,
achieving mean Average Precision (mAP) of 97.7%.

II. MOTIVATION
A. The Need for Pedestrian Liveness Detection

To make the right control strategy and ensure safety, au-
tonomous driving system needs to accurately detect pedes-
trians in the surrounding environment. In the real world
road environment, there are not only living pedestrians, but
also many interference targets, such as portraits in roadside
billboards and car body advertisements. These interference
may cause autonomous driving system to execute incorrect
commands and cause serious accidents. For example, a nor-
mally moving autonomous driving car brakes abruptly after
detecting portraits in a roadside billboard as living pedestrians
and may be rear-ended by a car behind it. On the other hand,
failing to detect living pedestrian results in serious issues. For
instance, it is reported that in 2018 Uber’s autonomous driving
test car causes collision after detecting pedestrian crossing the
road as non-pedestrian target [1].

This scenario motivates us to research on a reliable pedes-
trians liveness detection method. Specifically, when there is
living pedestrians and interference from portraits in front of
the autonomous driving system, our design aims at accurately
detecting living pedestrians and excluding visual interference
(e.g., billboard portraits).

B. Limitation of Existing Solutions

There has been a lot of impressive research in the field
of object detection using mmWave radar and camera, and a
number of mmWave radar datasets have been published, such
as CRUW [4], CARRADA [5], nuScenes [6] and RadarScenes
[7]. These related studies mainly focus on general object
detection and commonly use the location or intensity of the
object as the feature. Although effective, these methods are
not sufficient to distinguish between living pedestrians and
visual interference (e.g., portrait billboards). Specifically, the
position of a object doesn’t indicate its type. In addition,
pedestrians and visual interference might have the similar
absolute intensity. In the work, we propose new design to make
the pedestrian detector robust to visual interference.

III. BACKGROUND
This section introduces the primer of mmWave radar and
attention mechanism needed in this work.
A. Principles of mmWave Radar

The single-chip mmWave radar is based on the principles
of frequency modulated continuous wave (FMCW) and has
the ability to measure the range, relative radial speed and
angle of the target. Specifically, the FMCW radar repeatedly

transmits continuous chirp signals for a short period time
which frequency increases linearly with time. When receiving
the signal reflected by an object, the radar sensor produces
Intermediate Frequency (IF) signal, which is analyzed to
obtain three-dimensional position of the object.

Range Measurement. Based on the IF signal, the distance
d between the object and the radar can be calculated as:

JircT,

55 )
Here c is the speed of light, f;p is the frequency of IF signal,
B is the bandwidth swept by chirp, and 7, is the duration of
chirp. To measure the range of multiple objects at different
ranges, a fast Fourier transform (FFT) [8] is performed on the
IF signal (i.e., range-FFT). The result of range-FFT represents
the frequency response at different ranges.

Angle of Arrival Estimation. To depict the exact positions
of objects in a spatial Cartesian coordinate system, the angle
estimation is indispensable. The mmWave radar uses a linear
antenna array to estimates the object angle. After emitting
chirps with the same initial phase, RF Front-end simultane-
ously samples from multiple receiver antennas. Because the
phases of the received signals are different between receiver
antennas, the angle of the reflected signal can be estimated.
Formally, the AoA can be calculated as:

d:

. Aw
0 = arcsin 51 2)
Here w denotes the phase difference, [ represents the distance
between consecutive antennas and )\ is the wavelength. Once
obtaining the range and AoA () of the targets, we get the exact
positions of objects in a spatial Cartesian coordinate system.

B. Review of Object Detection

Since deep convolutional networks learn robust high-
dimensional feature representations in images, deep learning
strategies are widely used in object detection. Object detection
methods based on deep learning are divided into two cate-
gories: two-stage object detectors such as Faster-RCNN [9]
and single-stage object detectors such as YOLOv3 [10]. Two-
stage object detectors have an independent module to generate
region proposals. The working process of such detectors is
divided into two stages. In the first stage, these models find
a certain number of object proposals in the images, and then
classify and locate them in the second stage.

Faster-RCNN takes a Fully Convolutional Network (FCN)
as a region proposal network (RPN), which accepts any input
image and outputs a set of candidate windows. Each window
has a score, which determines the possibility of an object.
Different from two-stage object detectors, single-stage object
detectors combine extraction and detection and directly obtain
the results of object detection. Compared with two-stage
object detectors, they have simpler design and better real-time
performance. YOLOvV3 reconstructs the object detection from
the classification problem in two-stage object detection to a
regression problem, directly taking image pixels as objects and
their boundary box attributes to predict. Multi-scale training
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Fig. 1. System architecture.

makes YOLOV3 have good detection capability for small size
objects. Although one-stage object detectors are basically used
for object detection of single modal, their ideas of feature
extraction, prediction result generation and multi-scale training
can borrowed to our multi-modal object detection.

IV. SYSTEM OVERVIEW

In this paper, we propose a mmWave and vision fusion
pedestrian liveness detection system. Given the radar raw
data and visual images of the road environment, the system
detects living pedestrians in the road environment with visual
interference using radar RCS features. Fig. 1 shows the overall
architecture of our design. According to principle of mmWave
radar (Section III) and proposed radar RCS calculation method
(Section V), the radar raw data are processed to obtain radar
point cloud with RCS. Then, radar point clouds are projected
into radar pixel images and multi-scale features are extracted
from radar pixel images and visual images respectively. We
fuse multi-scale features of radar and vision based on attention
mechanism and predict bounding box results from fusion
features (Section VI).

V. FEASIBILITY OF PEDESTRIAN LIVENESS DETECTION

This section discusses radar RCS, the key feature for our
pedestrain liveness detection. We first explain the concept and
how to obtain it on commodity radar. Then, a comprehensive
measurement study is conducted.

A. Radar Cross Section

Radar cross section (RCS) is a measure of a target’s ability
to reflect radar signals in the direction of radar reception [11],
which are determined by the size, shape, material of the target,
incident/reflection angle of signal, etc. It is originally used
in military radar technology to classify aircrafts and missiles.
We notice that RCS has two unique characteristics that make
it ideal for our pedestrian detection task. (i) First, the RCS
of an objective in the far field of the radar is theoretically
a constant value. This is distinct from the absolute intensity
(or RSSI), which depends on the power of the transmitter,
the gain of the receiver, the position of an object, etc. (ii)
Second, human body is dramatically distinct from typical
visual interference in the road environments (e.g., billboard

and vehicle) in size, material and shape, which leads to
highly diffrent radar reflectivity. Therefore, RCS can be a very
discriminative feature to differentiate pedestrian from other
interfering objects.

B. RCS Acquisition on Commodity Radar

Standard outputs from commodity radar (e.g., TI TWR
series) does not provide the RCS value. Thus, we need to
design a method to obtain it. Theoretically, RCS o can be
derived using the calculation formula:

(47)3d*kTFSNR 3
o =
Pt GTX GRX >\2Tmeas

where, k£ (Boltzmann constant), 7' (the antenna temperature),
F (the noise coefficient of RX), and A (mmWave wavelength)
are constants and P; (output power of radar), Grx (TX
Antenna Gain), Grx (RX Antenna Gain), T},..s (the mea-
surement time), d (the distance between target and mmWave
radar) can also be calculated from the radar outputs and
metadata. The key challenge is to obtain SN R, i.e., the ratio of
the RX average signal intensity to the average noise intensity.
Specifically, the noise is mainly background noise of radar
circuit. Although the average noise intensity can be considered
unchanged, it is difficult directly measure from the integrated
radar device.

Our idea is that RCS should be proportional to RX signal
intensity when other parameters are determined. Therefore,
we use leverage a corner reflector [12], a square trihedral
metal device with known RCS as a reference (RCS of a
corner reflector be determined by its side length L as 12;\?4 ).
Specifically, we collect RX signal intensity of the corner
reflector across various distance d and build a benchmark
database B(d). With B(d), the RCS o, of an object in spatial
Cartesian coordinate (z, ¥, z) and with RX signal intensity P,
can be obtained as:

P,

op = oy

B(\/x? + y? + 2?2)

Note that we only need the corner reflection in calibration
stage. The system will use collected 3(d) during operation.

“4)
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C. RCS Value: Living Pedestrian vs. Visual Interference

We conduct a empirical measurement with an TWR6843
mmWave radar to verify the feasibility of using RCS for
object classification (i.e., consistency in various distances and
discrepency across different types of objects). As shown in Fig.
2, we set up two groups of target scenarios. The first scenario
consists of a portrait billboard and two vehicles. The billoard
is 0.8m x 0.7m and built with aluminum alloy which are the
most commonly used material. mmWave radar collect raw data
respectively and calculate the RCS of the targets based on the
calibration of B(d).

Billboard Pedestrian

Fig. 2. Experimental scenarios of RCS value differences between living
pedestrian and billboard.

The results shown in Table I demonstrates that RCS of living
pedestrian target is dramatically different from billboard and
vehicle. Average RCS of pedestrian is 3.5m2, whereas the
value of billboard and vehicle are 230m? and 500m?. Note
that the unit of RCS is m? because RCS is formally defined
as cross-sectional area of a perfectly reflecting sphere that can
produce reflection of the the same strength.

TABLE I
EXPERIMENTAL SCENARIOS AND RCS VALUES OF LIVING PEDESTRIAN
AND INTERFERENCE

Target Group Target Object RCS
1 Portrait billboard | 230m?
2 Vehicle 500m>
3 Living pedestrian | 3.5m>2

In Fig. 2 we further demonstrate the RCS of pedestrian
and billboard when they are moving from 20 meters to 40
meters. Fig. 3 shows that the RCS of living pedestrian is
very stable in the range of 2~5m? and the RCS of portrait
billboard is basically stable in the range of 210~250m?. These
results confirm that the RCS obtained from commodity radar at
different distances is generally consistent, which confirms the
the theory that the RCS of targets in the far field of mmWave
radar is their respective constant value.
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Fig. 3. Experiment result of RCS differences: living pedestrian vs. billboard.

D. Stability of RCS on Different Angles

The pedestrians are not always located directly in front of
the radar, so the movements of them change the angle of arrival
of the radar reflected signal. Therefore, we design experiment
to verify the influence of the change of angle of arrival to
the RCS value. As depicted in Fig. 4, we experiment with
two pedestrian targets in the scenes. The first pedestrian walks
away from the radar along the normal direction of the radar
plane, while the second pedestrian walks along the trajectory
that is 5 meters to the left of the horizontal direction of the
mmWave radar.

K H
Trajectory 2 Trajectory 1

e

Fig. 4. Experimental scenarios of stability of RCS at different angles.

Fig. 5 shows the results of RCS of living pedestrian targets
under two moving paths. Although varying angles of arrival
of radar signal change the areas irradiated by mmWave radar,
results of the two groups of RCS remain in the same fluctu-
ation range, indicating that RCS of living pedestrian targets
with different body angles have strong stability in the road
environment.
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Fig. 5. Experiment result of stability of RCS at different angles.

E. Summary

The empirical measurement results prove that RCS is con-
sistent over varying distances and angles while being distin-
guishable among pedestrians and other interfering objects in
road environment. These observations motivate us to design
a framework that incorporates radar RCS with image-based
pedestrian detector for a robust detection.

VI. DESIGN
A. Design Overview

In this section, we develop a multi-modal pedestrian liveness
detector that fuses radar RCS and images features to make
decisions. A naive method to fuse images with radar RCS is to
first use a two-stage image-based detector (e.g., Faster-RCNN)
to obtain all the local living pedestrian candidates in the image,
and then find the radar point clouds corresponding to the living
pedestrian candidates and judge whether the candidate is living
pedestrian according to the RCS value of the point clouds.
However, our empirical experiment shows that the two-stage
approach is not good at detecting distant pedestrians and only
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achieves mAP of 54.5% (more detailed in Section VIII). Thus,
it does not satisfy the requirements of autonomous driving
where pedestrians commonly appear in distance.

To reliably detect pedestrian across various distances, we
got inspiration from recent multi-scale feature extraction de-
sign in the single-stage image-based object detector (e.g.,
YOLOV3). Specifically, features are extracted from different
scales within an images and thus it can detect an object
regardless of its size in the image. For example, our experiment
shows that YOLOV3 has better detection accuracy (mAP of
82%) than Faster-RCNN (mAP of 51.4%) for small scale
objects with a long distance. Therefore, in order to make
our algorithm robust to visual interference while also being
accurate in various distances, we design a multi-scale detection
network with multi-modal feature fusion.

B. mmWave Radar Pixel Image

Our RCS calculation algorithm provides one RCS value for
each voxel in 3D space. Thus, all RCS value form is a 3D
heatmap. However, due to sparsity of radar point cloud, there
are a lot of voxels that don’t contain useful information for
pedestrian detection. In order to extract multi-scale features
from radar RCS more efficiently, we project the RCS from the
Cartesian coordinate system of radar to the pixel coordinate
system identical to the RGB camera by squeezing it on the
depth direction (y-axis) as follows:

Yo
v = 7M1M2 (5)
1

Y

— N 8

where M; is the 3 x 3 internal parameter matrix of RGB
camera, M, is the 3 x 4 external parameter matrix of RGB
camera, (u,v) is the pixel location in the RGB camera pixel
coordinate system. Since the mmWave radar and RGB cam-
era are fixed on autonomous vehicle, their relative positions
remain static during the movement. Therefore, M; and M
can be calculated in advance.

By doing this, we construct a 3-channel radar pixel image
with the same height and width as a RGB image, with the
initial value of the pixel to be 0. The value of pixel is set
according to the RCS value of the radar point that this radar
pixel is projected from. Fig. 6 shows a RGB image and radar
pixel image collected at the same time. Since the RCS value
of the living pedestrian is lower than that of the billboard, the
pixel blocks representing the living pedestrian are less bright
than the pixel blocks representing the billboard.

=t Billboard

Pedestrian

Image Radar Pixel Image

Fig. 6. Image and radar pixel image.

C. Multi-modal Feature Extraction

As we discuss in Section VI-A in autonomous driving
scenarios, objects might be located at a long range of distances
from the sensor. The scale of the object in the image and
the pixel block distribution area in the radar pixel image
will decrease with the increase of the distance. Moreover,
due to limited resolution of radar, when there are multiple
close objects, the boundary of their pixel block region may be
unclear. Therefore, we develop multi-scale feature extraction
for both RGB image and RCS pixel image that can obtain the
high-dimensional features of objects in different scales. This is
especially useful for maintaining accurate position prediction
of small scale objects.

As the blue and pink block in Fig.1 depicts, we use two 5-
layer residual networks to extract features from radar pixel
image and visual image. Each layer of residual network
is composed of multiple residual units. Each residual unit
contains a 1x1 two-dimensional convolution and a 3x3 two-
dimensional convolution. As the data complexity of radar pixel
image is lower than that of visual image, the number of
residual units in the residual network used to extract features
of radar pixel image is less than that of visual image, which
are (1,2,4,4,4) and (1,2,8,8,4) respectively. The features
extracted from the last three layers, from shallow to deep,
represent the feature of three different scales with sizes being
52x52, 26x26 and 13x13. In other word, each pixel in the
deeper layer captures the features in a larger scale. These three
features are used for the multi-modal feature fusion discussed
in the next section.

D. Multi-modal Feature Fusion

Feature extraction module yields multi-scale feature maps
for both the RGB image and radar pixel image. We then fuse
the multi-modal features to detect living pedestrians. A classic
operation of feature fusion is tensor concatenation. After con-
catenation, the multi-dimensional linear relationship between
features is further extracted using multi-layer convolution
operation. However, we find that since the features of radar
pixel image and visual image come from different modalities,
it is challenging for the convolution network to figure out their
linear relationship. Our preliminary experiment also proves
that the performance of tensor concatenation method has no
obvious advantage compared with single-modal detector (e.g.,
YOLOV3) as detailed in Section VIIL

Meanwhile, we find that the radar pixel image and the
visual image can be regarded as the observation of the same
object at the same position and perspective but with different
modalities (mmWave radar and visual modal respectively).
Therefore, we need guide the network associate features of
two modalities using their spatial relationship. Specifically, we
use the features extracted radar pixel images to help neural
networks to identify the area of interest for living pedestrians
in the images. This process is similar to the mechanism of
human brain ignoring irrelevant information and focusing on
key information when processing information overload and the
features of radar pixel images can be regarded as the weight
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matrix when observing images. Technically, it is achieved by
fusing radar pixel image features and visual image features
using the attention mechanism [13]. The feature fusion formula
of attention mechanism is as follows:

Fij=¢WVij) ©¥(Ri;) (6)

where F; ; is the value of the fused feature at the index (4, 5),
V is the visual image feature, R is the radar pixel image
feature, ¢ stands for linear mapping operation, 1 stands for
two-dimensional convolution and Softmax operation and ®
stands for Hadamada product operation. ¢ and v are learnable
parameters that obtained from training data.

The attention operations are operated on features of different
scales. Furthermore, we borrow the idea of feature pyramid
network and feed the features captured in the global scale to
back to the ones of local scale to provide extra context. More
specifically, the fusion feature of the layer 5 is up-sampled
and then concatenated with the fusion feature of the layer 4 to
generate the final fusion features of layer 4. The new fusion
feature of the layer 4 is up-sampled and concatenated with the
fusion feature of layer 3 to generate the final fusion feature
of layer 3. Finally we generate pedestrian liveness prediction
results from the fusion features of these three layers.

VII. IMPLEMENTATION AND DATA COLLECTION
A. Data Collection

a) Data Collection Platform: For the radar and camera
data collection, we design a mobile data collection platform
with a commercial and off-the-shelf mmWave radar IWR6843
and a commercial high-definition RGB camera Logitech Pro
C920 (as shown in Fig. 7) to simulate an on-board system.
The radar operates in a frequency band from 60GHz to 64GHz
whose wavelength is ~ 4mm. It has three transmitting anten-
nas and four receiving antennas that form a 60 degree azimuth
FoV and 60 degree elevation FoV whose angle resolution is
~ 15°. For reproduction, the detailed configuration parameters
of the device are provided as follows: the device is set to
transmit 64 chirps per frame. The start frequency of the chirp is
set to 60GHz. The frequency bandwidth is set to 1009.82MHz.
The Frequency slope is set to be 21.038MHz/us. The RGB
camera records video at a resolution of 1920x 1080 at 30fps.

b) Experiment Site: For experiments, we simulate the
vehicle driving scenario and collect data from the vehicle
lane on campus. Portrait billboard is placed at one end of the
motorway, on the left or right side and living pedestrians walk
near the portrait billboard. The data collection platform moves
towards the billboard and pedestrians from the other end of
the motorway, about 50 meters away. In the process of data
collection platform movement, mmWave radar and camera
record data simultaneously. We collect 13800 frames image
data and 2760 frames radar data on four different motorways.
The proportion of the dataset containing single, two, and three
living pedestrian scenarios is 20%, 70% and 10% respectively
and all the scenarios have a portrait billboard as interference.
The ratio of training and validation data to testing data in our
dataset is 9:1. Since billboard portraits are the same in all

scenarios, to avoid over-fitting of the neural network during
training, billboard portraits in the validation data and testing
data are replaced with other portraits not present in the dataset,
respectively, to achieve data augmentation. It took about 60
days to collect the data.

—_——
mmWave Radar
IWR6843

pam—

Fig. 7. Data collection platform.
B. Object Segmentation for Radar Data

The radar data was collected in outdoor environments that
include static obstructions such as trees and ground, together
with the portrait billboard and living pedestrians. In such
an environment, however, multipath noise is non-negligible,
which is a common issue for almost all RF technologies.
Due to the reflection of ambient objects and beam spreading,
the propagation of mmWave signals between objects and
transceivers tends to travel through multiple paths. Conse-
quently, unwanted points often appear in the radar point cloud
which are widely known as the ghost points. In order to
mitigate the impact of these noisy points and segment portrait
billboard and living pedestrians out, we implement clustering
based point segmentation.

We apply the DBScan algorithm to acquire the cluster of
points of billboard and pedestrian such that the noise can be
suppressed. DBScan is a density-aware clustering algorithm
that can divide a point cloud based on the distance and the
density described based on a set of neighborhoods in the 3D
space. As it does not require the number of clusters to be speci-
fied a priori and can automatically mark outliers that are noise,
DBScan has been used to separate individual objects from
mmWave radar point clouds. Our implementation separates the
radar points into different clusters and selects effective objects
according to the number of points in cluster. Regarding the
hyperparameters settings of DBScan, we empirically set the
maximum distance (radius) between two points falling into
the same cluster to 1 and set the minimum point number in a
cluster to 3.

VIII. EVALUATION
A. Evaluation Methodology

a) Evaluation Metrics: Precision, Recall, F1 score and
mAP are main evaluation metrics for object detection tasks.
Precision is the percentage of truly positive samples that
are predicted to be positive. Recall refers to the percentage
of positive samples that are correctly predicted. The true or
false attribute of the sample bounding box is determined by
its intersection-over-union (IoU) with the ground truth box,
which is the ratio of intersection and union between sample
bounding box and ground truth box. For instance, when the
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IoU threshold is 0.3, if the IoU between sample bounding
box and ground truth box is greater than 0.3, the sample
is considered to be true. F1 score is a metric that measures
the accuracy of binary classification model, which takes into
account both the precision and recall of classification model. It
is regarded as a harmonic mean of model precision and recall.

mAP is the mean of each class AP. AP is the area under
Precision and Recall curves generated by confidence threshold
changes, and represents the overall performance of the detec-
tion method under different confidence threshold. To calculate
the AP, we first use the trained model to obtain the confidence
score of all bounding boxes and rank them according to the
confidence score. Then, we select the top-1 to the top-n results
from the ranked boxes to calculate the precision and recall
corresponding to the number of boxes respectively. All pairs
of precision and recall are combined to form a P-R curve and
the AP is the area under the P-R curve.

b) Competing Approaches:

o Faster-RCNN and Radar RCS (Faster+RCS): This is
the fusion method of two-stage detector and radar point
clouds with RCS information mentioned in Section VI.
We apply this method to our dataset to calculate its
detection performance for living pedestrians.

« w/o attention mechanism (No-Attention): Our proposed
feature fusion method based on attention mechanism is
replaced by tensor concatenation fusion. This setting aims
to examines the importance of attention mechanism to the
performance.

e w/o RCS (No-RCS): To examines the effectiveness of
RCS in pedestrian liveness detection in our proposed
method, RCS features in radar data is replaced with RX
signal intensity, and a new radar pixel image dataset
is made to calculate the pedestrian liveness detection
performance of our proposed method.

o milliEye [14]: MilliEye is a method proposed by Xian
et al. in 2021 to achieve object detection in dark light
environment by using the fusion of camera and mmWave
radar. MilliEye takes advantage of mmWave radar’s abil-
ity to be unaffected by light and combines 3d radar
point clouds with visual images to detect objects under
dark light conditions. It can basically be regarded as
a fusion method of two-stage detector and radar point
clouds without RCS information. We apply milliEye to
our dataset to calculate its detection performance for
living pedestrians.

Proposed
No-RCS
No-Attention

Faster+RCS

milliEye

0 20 40 60 80 100
mAP (%)

Fig. 8. Overall performance.

B. Overall Performance

As Fig. 8 depicts, our method achieves an mAP of 97.7%
in the pedestrian liveness detection, the best performance of
all methods. No-RCS achieves an mAP of 90.1% which is
7.6% lower then our proposed. This demonstrates that radar
RCS is superior to absolute intensity in help distinguishing
real living pedestrians from visual interference. No-Attention
achieves an mAP of 84.6% which is 13.1% lower then
our proposed. This proves that the attention mechanism can
promote the efficient fusion of pixel image and image features.
Faster+RCS achieves an mAP of 54.5% which is 43.2%
lower then our proposed and only 3.1% higher than Faster-
RCNN and milliEye achieves an mAP of 40.2% which is
57.5% lower then our proposed. These results demonstrates
the the weakness of two-stage approaches for object detection
in autonomous driving scenarios (e.g., inaccurate in detecting
distant pedestrian with small scale in the image). Two exam-
ples of pedestrian liveness detection by our method are shown
in Fig.9. Red dots represent point cloud with high RCS values
of billboard and yellow dots represent point cloud with low
RCS values of living pedestrians.

Fig. 9. Examples of pedestrian liveness detection.

C. Sensitivity Analysis

a) Precision, Recall, and F1 Score: We break down the
overall accuracy and compare precision, recall, and F1 score of
our method with baselines. The results in Fig. 10, our method
outperforms baselines in all the metrics. As can be seen from
Fig. 10(a), due to the replacement of RCS with intensity, NO-
RCS loses the unambiguous metrics for distinguishing living
pedestrians and thus is prone to false positive errors, resulting
in a Precision reduction of more than 13% compared with
Proposed. Furthermore, Fig. 10(b) shows that due to the lack
of multi-scale feature extraction, Faster+RCS is prone to miss
detection, which leads to a relatively low Recall. Finally, as
shown in Fig. 10(c), milliEye, due to the lack of both radar
RCS features and multi-scale method, results in a significant
decline in comprehensive performance.

b) Impact of IoU threshold: In our evaluation, we calcu-
late the IoU of predicted bounding boxes and ground truth
boxes. The pedestrian is detected when is higher than the
predefined threshold. Thus, we set IoU thresholds to various
values to observe its impact on evaluation results.

When the IoU threshold increases, bounding boxes of small
scale objects are more likely to be lost. Fig. 10(d) shows that
mAP of Proposed is always above 97% and remains optimal,
which proves its robustness. The performance of the method
based on two-stage detector is lower than that of the method
based on one-stage multi-scale detector, which proves that the
multi-scale method can detect small scale objects in long-
distance scenes.
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Fig. 10. Performance of proposed and baselines in different IoU thresholds

c) Impact of object distance: The distance between the
object and the experimental platform affects the scale of the
object in the image and the radar pixel image. In our dataset,
the proportions of data from different distances are basically
the same. Fig. 11 shows that the mAP metric of our method is
basically stable at 97% on different distance data, regardless of
the number of live pedestrians in the experimental scenarios,
indicating the robustness of our method for pedestrian liveness
detection at different scales.
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Fig. 11. Performance with different distance and number of living pedestrians.

d) Impact of the number of living pedestrians: The
number of living pedestrians in the experimental scene affects
the evaluation metrics of our method. Our dataset is segmented
by the number of living pedestrians to separately evaluate
the detection performance of our method. Fig. 11 shows that
with the increase of the number of living pedestrians, the
overall mAP of our method remains above 97% (actually
rises slightly because multiple pedestrians in long distance are
more detectable by radar) over the same object distance range,
indicating that our method is robust in multi-object scenes.

e) Impact of different road scenes: In different experi-
mental road scenes, the differences of road condition and the
distribution differences of trees and road lamps on both sides
of the road together constitute different radar electromagnetic
environments, which affect the collection of radar raw data.
The detailed road environment is shown in Table II.

We conduct experiments in four different road scenes with
different numbers of living pedestrians. The results show that

TABLE II
DIFFERENCES OF ROAD SCENES
Scene | Condition | Location of Trees Lamps Pedestrians
1 Rough End of road Not exist 1
2 Rough Not exist Not exist 1&2
3 Flat Both sides of road Exist 1&2
4 Flat End of road Exist 2&3

the change of road scenes has little effect on proposed perfor-
mance. In these four scenes, the mAP metrics of proposed are
97.4%, 97.3%, 97.1%, and 97.7%, respectively. The evaluation
validates that the RCS calculation method of our design is
resilient to environmental heterogeneity. The reason lies in that
the ambient noise is not enough to affect the radar SNR and
our preprocessing algorithm can remove the static reflection
points in different environments.

f) Impact of sunlight condition: To evaluate the general-
ization performance of the model, we conduct experiments in
four scenes of different sunlight conditions as shown in Table
III. In scene 1&2, the camera is interfered by direct or reflected
sunlight from objects making it harder than normal to detect
objects. In scene 4, object image blur caused by low light is
also not conducive to object detection. The results show that
the change of sunlight condition has little effect on proposed
performance. Our method achieves mAP of over 97% in all
four scenes. The verification confirms that our method makes
full use of the characteristics of mmWave radar insensitive
to environmental weather, which is helpful for the practical
application of our method.

TABLE III
DIFFERENCES OF SUNLIGHT CONDITIONS

Scene | Experimental Platform Objects

1 Face the sun, strong light Back to the sun, shadow

Back to the sun, shadow | Face the sun, strong light
Cloudy, ordinary light brightness

Nightfall, low light brightness

B Wl N

IX. RELATED WORK
A. Single-modal Object Detection

Both visual-based and radar-based detection techniques
have been separately studied in the literature. In computer
vision, human contour features are usually used to detect
pedestrians from RGB images [9, 10]. These methods do
not consider liveness detection. Liveness detection is achieved
through facial contour features in the images [15]. However,
the method only when there is a close face in the image and
thus doesn’t work for autonomous driving scenarios.

On the other hand, mmWave radar is proposed as an
environmentally insensitive detection method in autonomous
driving. In [16], radar Doppler spectrum is analyzed as the
motion characteristics to distinguish vehicles and pedestrians.
Radar heatmap is input into neural networks in [17, 18] for the
classification of different types of objects on road environment.
Radar point cloud is used for road object classification and
vehicle detection in [19, 20]. However, the sparse and noisy
characteristics of radar limits their performance.
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In contrast to these single-modal detector, our work combine
image features with the radar RCS to improve the accuracy
and robustness of pedestrian detection.

B. Multi-modal Object Detection

Multi-modal object detection has been studied by the au-
tonomous driving community based on on-board sensors for
years, including mmWave radar and camera fusion and LiDAR
and camera fusion. A large number of studies fuse mmWave
radar point cloud [21-24] or Doppler heatmap [25, 26] with
visual images to achieve object detection, but as our evaluation
shows, point cloud and heatmap are not sufficient to achieve
pedestrian liveness detection. Although object detection based
on LiDAR and visual image fusion has been studied [27-
32], pedestrian living detection remains largely unexplored,
with 3DCNN [33] being the only work in this field. How-
ever, 3DCNN is a technology based on LiDAR point clouds,
making it difficult to distinguish real pedestrians from stereo
humanoid object interference. By studying the emerging low-
cost mmWave radars and RGB cameras, our proposed method
utilizes the RCS characteristics of mmWave radars to achieve
pedestrian liveness detection even in the presence of stereo
humanoid object interference due to significant differences in
size, material and shape.

X. CONCLUSION

This paper presents a novel system design that detects living
pedestrians with data captured by mmWave radar and RGB
camera. To make pedestrian liveness detection feasible, we
introduced radar RCS as the key feature of our approach. In
order to ensure the detection ability of long-distance small-
scale objects, we construct a global multi-scale feature extrac-
tion network. Our system also propose a multi-modal feature
fusion method based on attention mechanism to efficiently
fuse multi-modal features. We believe our system demonstrates
the potential of multi-modal pedestrian liveness detection and
envision it to serve as a key solution for precise perception in
the autonomous driving.
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