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ABSTRACT
3D human pose plays a critical role in human behavior understand-
ing and has many applications (e.g., VR/AR). Conventional pose
estimations deploy sensors as fixed infrastructure, which signifi-
cantly restrains the mobility of the user. Inspired by the emerg-
ing head-mounted devices (e.g., VR/AR glasses) and the recent ad-
vance in low-cost mmWave radar, we present mmEgo, the first
egocentric human pose estimation design using a head-mounted
mmWave radar, which offers ubiquitous pose tracking with high
mobility, robustness to complex environments, and privacy preser-
vation. To tackle the unique challenges of radar sensing from the
egocentric perspective (e.g., random radar motion and the scarcity
of information on the lower body), we propose several technical de-
signs, including root-relative radar motion tracking for radar mo-
tion decoupling and a two-stage pose estimator that incorporates
human kinematics priors. Extensive experiments and case studies
show that our method can reduce the joint localization error by
44.2% and potentially enable a wide spectrum of applications.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization → Embedded and
cyber-physical systems.
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1 INTRODUCTION
Human pose estimation, aiming at reconstructing 3D body mo-
tions, plays an important role in many applications such as sports
analysis, human-computer interaction, augmented reality (AR), vir-
tual reality (VR), and rehabilitation. Conventionally, human poses
are captured by MoCap devices (e.g., cameras) installed around
the scene or a large number of IMUs on the body. However, the
fixed MoCap infrastructure suffers from a limited recording vol-
ume, which constrains the range of spatial motions and thus can-
not serve daily activities involving large-range mobility. On the
other hand, body-worn IMUs require cumbersome setups and com-
plicated calibration operations, causing inconveniences for users
and hindering normal activities and social interactions.

The recent popularity of head-mounted devices (e.g., VR glasses
and smart helmets) inspires a new direction named egocentric pose
estimation [17, 20, 33, 40, 46, 51]. Specifically, it estimates the pose
from a single head-mounted device worn by the user, which offers
the user both mobility and convenience. For example, the Apple
Vision Pro [1] is equipped with several cameras to replace the tra-
ditional handle. However, vision-based approaches are sensitive
to lighting conditions, smoke, dust, and the appearance of humans
and often cause privacy concerns.
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In this work, we propose mmEgo, the first egocentric pose es-
timation design using mmWave radar. The emerging integrated
radar is low-cost and compact (approximately 10 centimeters), mak-
ing it easy to embed it into head-mounted devices (e.g., AR head-
sets). Furthermore, the researchers [8, 26, 36, 52, 53, 65] recently
demonstrated their potential to provide various human sensing ca-
pabilities while being robust against adverse lighting or weather,
privacy-preserving, and non-intrusive to users. We envision that
radar-based egocentric pose estimation enables a wide range of
applications such as immersive VR, motion-assisted analysis, AR
vision enhancement for first responders, and security behavior de-
tection for drivers (depicted in Fig. 1).

Despite the recent success of radar in various human sensing
tasks, the egocentric perspective imposes two unique challenges
for pose estimation. First, head-mounted devices are non-stationary,
and therefore the radar signal contains not only the change of pose
but also random device movement caused by head motion. Our ex-
periment shows that the radar movement significantly corrupts
the spatial-temporal features of the pose obtained by the state-of-
the-art method, leading to significant joint localization errors (a
maximum of 16cm). Secondly, due to the top-down view angle,
the radar signal on the lower body suffers from severe specular
reflection and self-occlusion by the upper limbs. As a result, an ex-
tremely limited amount of lower-limb motion is perceived by the
radar, causing challenging accuracy in lower-body estimation.

To tackle the aforementioned challenges, we introduce several
novel approaches for accurate egocentric 3D pose estimation with
a single head-mounted mmWave radar. Firstly, to mitigate the im-
pact of radar movement, we fuse the radar point cloud with IMU
measurements commonly available in head wearables. We design
a multi-scale LSTM network to accurately track the root-relative
position of radar while carefully avoiding the curse of large drift
of IMU. Using accurate radar position tracking, we manage to de-
couple the radar self-motion from the radar point cloud and re-
store the spatial-temporal signature of the human pose. Secondly,
to overcome the scarcity of lower-body information, we exploit the
inherent correlation between upper and lower-body movements.
We design a two-stage pose estimation network that explicitly in-
corporates the sparse lower-limb point cloud with the available
upper-body clues to infer the missing lower-body posture.The pro-
posed approach effectively reduces the upper and lower joint error
by 35.4% and 42.7% respectively.

To summarize, our contributions are as follows:

• To the best of our knowledge, we present mmEgo, the first
egocentric human pose estimation design using commercial-
off-the-shelf mmWave radar, providing ubiquitous pose es-
timation with high mobility, environment robustness, and
privacy preservation simultaneously.

• Wedevelop a head-mounted testbedwith a commodity radar
device and collect a real-world egocentric radar dataset of
various daily activities. Through benchmark experiments,
we identify the fundamental challenges of egocentric hu-
man pose estimation using radar.

• We propose a novel multi-stage pose estimation network
that is resilient to random radar motion incurred by head
motion and tackles the scarcity of lower-limb information.

• Extensive evaluations and case studies are conducted, which
demonstrate that mmEgo achieves an average joint localiza-
tion error of 4.3cm and an average rotation error of 4.9◦.

2 MOTIVATION AND CHALLENGES
2.1 Motivation
The feasibility of human pose estimation using mmWave radar has
recently been studied in [26, 36, 52, 53]. However, these existing
works deploy the radar as a fixed infrastructure (e.g., mounted on
the wall or the ceiling) and perceive the user from the peripheral
view, which has fundamental limitations. A single radar deploy-
ment suffers from a limited sensing range (10m), which signifi-
cantly restrains the user’s mobility while installing multiple radars
incur high cost and complexity. To address the limitations, we pro-
pose egocentric radar pose estimation by integrating radar into the
emerging head-mounted wearables (e.g., Apple Vision Pro [1] and
Microsoft Hololens [3]) and monitoring the user’s pose from the
top-down perspective. The benefits are obvious. Embedding radar
into wearable naturally enables ubiquitous pose estimation for a
wide range of applications with high mobility. Furthermore, the
user only needs to wear a single device, which is both more cost-
effective and convenient.
Potential Applications. Fig. 1 illustrates the potential use cases
of the proposed system. In immersive applications, VR/AR glasses
can use the embedded radar to continuously track users’ poses
and dynamically produce content. For athletes, the sports helmet
equipped with radar offers real-time pose analysis and provides
feedback for them to optimize their performance, prevent injuries,
and enhance their overall fitness levels. In addition, the pose esti-
mated by radar-equipped safety helmets monitors the safety status
of firefighters or miners in complex environments and facilitates
effective coordination among team members. Finally, the radar-
equipped vehicle helmet worn by the driver can monitor the user’s
safety behavior and prevent traffic accidents.

2.2 Challenges
Technically, estimating pose with radar from the egocentric per-
spective is non-trivial and incurs two major challenges.

2.2.1 Random radar motion. Unlike the fixed radar infrastructure,
the head-mounted radar device is non-stationary as the headmight
move voluntarily (e.g., the user looks left and right) or involuntar-
ily (e.g., vibrates onwalking).This imposes challenges for pose esti-
mation since the radar data contains both motions caused by pose
changes as well as the random device motion caused by the head.
The pose estimation needs to distinguish human pose changes from
the motion of the device, which is non-trivial for mmWave radar.

More specifically, limited by the angular resolution and aper-
ture size, low-cost radar (e.g., TI IWR6843) produces 3D point clouds
that are sparse and noisy (an example is shown in Fig. 1). A single
frame of point cloud often lacks sufficient information for pose es-
timation. Recent pose estimation designs [9, 47, 53] commonly em-
ploy the neural network that can extract spatial-temporal features
from multiple consecutive radar frames. The neighboring frames
supplement each other and provide additional details of various
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Fig. 2. Impact of random radar motion: (a) joint localization error (JE) with vigorous and minor head motion (VHM and
MHM); (b) JE with head motion only (HoM); (c) visualization of pose estimation error for SOTA [53].

body parts. However, the presence of random radar motion ren-
ders themulti-frame feature extraction and fusion difficult because
spatial-temporal features of a specific body motion might vary sig-
nificantly under different radarmotions. Moreover, voluntary head
motions cause dramatic changes in the reference coordinate sys-
tem between frames, making it impossible to associate point clouds
of the same body part across frames and track their trajectory.
Benchmark Experiment.We investigate the impact of radar mo-
tions on egocentric pose estimation. The subjects wear the exper-
imental helmet (detailed in Section 4.1) and perform the actions
of three categories: body pose change accompanied by minor (i.e.,
involuntary) head motion (e.g., walking, raising hands), body pose
change accompanied by vigorous (i.e., voluntary) headmotion (e.g.,
looking up and down while raising hands, looking left and right
while walking), and pose with only head motion (e.g., nodding,
shaking head). We collect raw point clouds observed from themov-
ing reference frame of radar (MRF) as well as the absolute position
of the radar in the world coordinate system using an Azure Kinect.
We implement the state-of-the-art design for stationary radar in-
frastructure (mmMesh [53]) to predict joint positions directly from
raw point clouds in MRF. In addition, to measure the impact of
head motion, we manually transform raw point cloud data into
the fixed reference frame (FRF) using ground truth radar positions
in the world coordinate system (from Kinect) and repeat the pre-
dictions with mmMesh.

Fig. 2 compares the distribution of joint localization errors be-
tween MRF (with radar motion) and FRF (radar motion is canceled
with ground truth). As depicted in Fig. 2(a), voluntary head mo-
tions (VHM) of the human body can disrupt pose estimation, incur-
ring a 72.9% overall error increments and causing up to 16.07 cm in
leaf joints (e.g., wrist and ankles). Even involuntary head motion
(MHM) results in a non-trivial error increase (47.9%). Interestingly,
Fig. 2(b) shows the 177% error incrementswhen there are only head
motions (HoM), implying that the machine learning model cannot
distinguish pose change and radar motion. Fig. 2(c) depicts exam-
ples of the results where dotted circles and arrows indicate areas of
significant error and overall bias compared to ground truth. While

the result closely resembles the true skeleton without head motion
(1𝑠𝑡 frame), voluntary headmotions (2𝑛𝑑−5𝑡ℎ frames) introduce se-
vere estimation errors, (e.g., whole body rotation) and minor head
motions (6𝑡ℎ − 7𝑡ℎ frames) also result in deviations of body parts.

The results demonstrate that radar motions severely affect the
accuracy of egocentric radar pose estimation. To overcome the
challenges, a straightforward approach is to leverage IMU to track
radar at each timestep and align the radar frames to the world co-
ordinate system. However, IMU tracking is non-trivial, and the es-
timation error of the absolute position using conventional algo-
rithms (e.g., double integration [10]) drifts over time, which re-
mains an ill-posed problem to address.Wewill propose ourmethod
to address this challenge in Section 3.3.

2.2.2 Scarcity of lower-body information. The second critical chal-
lenge for egocentric pose estimation is the scarcity of radar point
clouds on the lower body. Specifically, mmWave signal undergoes
specular reflection (mirror-like reflection) on the human skin. As
Fig. 3(a) shows, due to the top-down perspective of the radar, a
significant amount of signal impinging on the lower body is re-
flected towards the ground. Moreover, radar signals could be oc-
cluded by the upper limbs, further limiting the received informa-
tion from the lower body. Fig. 3(b) showcases an extreme example
of point clouds captured during walking and lunging, where the
lower body is completely missing in the point cloud.

To quantify the scarcity of information regarding the lower body,
we gather radar point clouds corresponding to 13 representative ac-
tivities (elaborated in Section 4.2) from both egocentric and periph-
eral perspectives.These point clouds are segmented into upper and
lower body portions, with the pelvis joint serving as the boundary.
In Fig. 3(c), we present a statistical comparison of the proportion of
point clouds detected on the upper and lower body from both tra-
ditional peripheral and our innovative egocentric perspectives, re-
vealing a notable shift from a nearly 1:1 ratio to an approximate 3:1
ratio. Consequently, addressing lower-body pose estimation with
limited information becomes a non-trivial challenge, whichwewill
delve into further in Section 3.4.
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3 DESIGN
3.1 Overview
mmEgo consists of three major components depicted in Fig. 4.
Data Acquisition. The head-mounted device is equipped with a
mmWave radar and an IMU sensor that simultaneously collects the
radar point cloud and IMU measurements. Specifically, the radar
emits FMCW (Frequency Modulated Continuous Wave) signals,
captures reflections from the user, and generates 3D radar points.
The collocated IMU sensor measures the acceleration and angular
velocity of the device using its built-in gyroscope and accelerome-
ter. Additionally, in the training stage, we deploy an Azure Kinect
v2 [4] to obtain the ground truth labels of the user’s pose and the
radar motion from the peripheral view.
Radar Motion Tracking. To mitigate the impact of radar motion,
we introduce a multi-scale LSTM network that estimates the radar
position and orientation from IMU data. The estimation serves to
decouple the information of human pose change from the rawpoint
cloud and restore the spatial-temporal features for human pose es-
timation. The details are described in Section 3.3.
HumanPose Estimation.The3Dhuman skeleton is reconstructed
with the decoupled point cloud. A two-stage deep neural network
is presented to estimate upper and lower body poses separately
(i.e., UpperNet and LowerNet). The details are given in Section 3.4.

3.2 System Input
The input of our system consists of the point clouds obtained from
mmWave radar and IMUmeasurements.The sequence ofmmWave
point clouds can be denoted as 𝑝𝑚𝑚 = {𝑝𝑖,𝑡 }, 𝑡 ∈ [0,𝑇1) and
𝑖 ∈ [1, 𝑁 ], where 𝑇1 represents the number of frames and each
frame contains N points. Each point 𝑝𝑖,𝑡 ∈ R6 includes 3D coor-
dinates (𝑥𝑖,𝑡 , 𝑦𝑖,𝑡 , 𝑧𝑖,𝑡 ) in the radar coordinate system, range 𝑟𝑖,𝑡 ,

Kinect 
System
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Ground Truth Skeleton

Multi-Scale LSTM

…

Constructed Skeleton

Human Pose Estimation

UpperNet

LowerNet
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IMU Data

mmWave 
Board
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mmWave Point Cloud

Upper Body

Human Pose Estimation

Decouple

Fig. 4. System Overview.

intensity 𝑠𝑖,𝑡 and velocity 𝑣𝑖,𝑡 . The measurements of IMU is rep-
resented as 𝑥𝑖𝑚𝑢 = {𝑎𝑡 , 𝜔𝑡 }, 𝑡 ∈ [0,𝑇2), where 𝑇2 is the number
of IMU samples, 𝑎𝑡 ∈ R3 is the acceleration, and 𝜔𝑡 ∈ R3 is the
angular velocity.

3.3 Radar Motion Tracking
This section introducesmulti-scale LSTM to track themotion of the
radar from IMU,which addresses pose estimation error incurred by
radar motion (described in Section 2.2.1).
3.3.1 Design Methodology. Due to the noise and bias of low-cost
IMU measurements, the estimation of the absolute radar motion in
the global reference system suffers from the large drift [10]. Recent
studies [12, 15, 28, 38] attempt to address this issue using learning
approaches but they commonlymake assumptions about the user’s
motion (e.g., only walking) and therefore cannot be applied to pose
estimation. Our key insight is that to mitigate the impact of radar
motion on egocentric pose estimation, we only need to estimate
the relative radar position and orientation rather than the absolute
one. Specifically, egocentric pose estimation can be considered as
tracking the relative position of various joints to the root of the
skeleton. Therefore, we can define and address the radar motion
tracking problem in the root-relative coordinate system as well.

As Fig. 5 shows, we choose the neck to represent the root of
the skeleton and estimate the radar position and orientation in the
neck-relative system. We find that benefiting from the inherent
structure of head motion, it is feasible to predict the relative rota-
tion of the radar to this point based on IMU acceleration and angu-
lar velocity. Furthermore, due to the geometric constraints of the
head, the relative position of radar has a definite one-to-one map-
pingwith its relative rotation and thus is also predictable from IMU
measurements.

Neck

Radar-Relative Coordinate System (𝑭𝑭𝒓𝒓) 

Neck-Relative Coordinate System (𝑭𝑭𝒏𝒏 )

x

y

z

Fig. 5. Estimating radar position and orientation in the
neck-relative coordination system (𝐹𝑛).



Egocentric Human Pose Estimation using Head-mounted mmWave Radar SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

3.3.2 Multi-scale LSTM. We use a data-driven approach to pre-
dict the relative radar motion. To capture both involuntary (subtle)
headmotion at short time scales and intentional (violent) motion at
long time scales, we design a multi-scale LSTM network that mod-
els the radar motion and predicts the root-relative radar position
and orientation. As illustrated in Fig. 6, we first segment the IMU in-
put sequence 𝑥0:𝑇2𝑖𝑚𝑢 into sub-sequences [𝑥0:𝜎𝑖𝑚𝑢 , 𝑥

𝜎 :2𝜎
𝑖𝑚𝑢 , · · · , 𝑥

𝑇2−𝜎 :𝑇2
𝑖𝑚𝑢 ]

where the length 𝜎 = 𝑇2/𝑇1 is the number of IMU samples during
a radar frame interval. We use fully connected layers to generate
feature embeddings for the sub-sequences, which are then fed into
a bidirectional two-layer LSTM [34] to extract sequential features
at a short time scale (i.e., 100 milliseconds). Then, a self-attention
layer [41] aggregates the extracted features in each sub-sequence:

𝑓𝑖 =
𝜎∑
𝑡=0

𝐿(𝑐𝑡𝑖 ) · 𝑐
𝑡
𝑖 (1)

where 𝑖 is the index of sub-sequence, 𝑡 is the sample index in each
sub-sequence, 𝑐𝑡𝑖 is the representation of each time step in the 𝑖th
sub-sequence, 𝐿 is a learnable linear mapping function and 𝑓𝑖 is the
aggregated representation.

To extract sequence features at a long time scale, the aggrega-
tion representations undergo another bidirectional two-layer LSTM.
Finally, a fully connected layer is used to map the extracted fea-
tures to the output including root-relative radar orientation 𝑅𝑟 ∈
R3×3, and the root-relative position 𝑝𝑟 ∈ R3. In the network, we
use the 6D orientation as the intermediate representation of 𝑅𝑟 ,
which is a smoother and more continuous rotation representation
mentioned in Zhou et al. [67], and finally convert it to the rotation
matrix in SO(3). The loss function used to train this radar motion
tracking module is defined as:

L𝑅 = 𝛼
𝑇1∑
𝑡=0

cos−1
(
𝑡𝑟 (R̂𝑡𝑟R𝑡𝑟

𝑇 ) − 1

2

)
+ 𝛽

𝑇1∑
𝑡=0

p̂𝑡𝑟 − p𝑡𝑟


2

(2)

where 𝛼 and 𝛽 represent hyperparameters, R̂𝑡𝑟 and p̂𝑡𝑟 denotes the
predicted orientation and position of the radar at the 𝑡𝑡ℎ frame,
while R𝑡𝑟 and p𝑡𝑟 correspond to the ground truth values.

3.3.3 Decouple procedure. Tomitigate the impact of radar motion,
we use the estimated radar position and orientation to unify the

[𝑅𝑟 , 𝑝𝑟]
𝑡+1−𝑇1 …[𝑅𝑟 , 𝑝𝑟]
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𝑡
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Fig. 6. Radar motion tracking module.

sequence of radar point clouds to an identical coordinate system
defined by the root of the skeleton. In this way, the transformed
point cloud can be considered as being observed from a virtual
radar on a fixed spot in the root-relative system, and the radar mo-
tion is decoupled. More specifically, the relative radar orientation
(R𝑟 ) and position (p𝑟 ) predicted by the multi-scale LSTM are used
to transform the coordinate system of the point cloud 𝑝𝑚𝑚 from
the radar coordinate system (denoted as 𝐹𝑟 ) to the neck coordinate
system (denoted as 𝐹𝑛) as shown in Fig. 5. As a result, the esti-
mated human pose from the point cloud is also transformed into
𝐹𝑛 . Note that in order to eliminate the influence of radar motion
errors on the human pose, we perform a reverse transformation of
the human pose back to 𝐹𝑟 in the end. In the following sections,
unless specified otherwise, the input point clouds and body joints
are represented in 𝐹𝑛 and the output body joints are represented
in 𝐹𝑟 .

3.4 Two-stage Human Pose Estimation
This section introduces our two-stage method to estimate the po-
sition of joints from sparse mmWave point clouds.

3.4.1 Design Methodology. Egocentric pose estimation is non-
trivial for radar because the lower-body information is extremely
scarce due to specular reflection and self-occlusion. As discussed
in Section 2.2.2, we observe a significant imbalance of point cloud
distribution on the upper and lower body. Motivated by this obser-
vation, we design a two-stage pose estimation network, in which
we break down the task into upper body estimation with UpperNet
(Section 3.4.2) and lower body estimation with LowerNet (Section
3.4.3). UpperNet directly predicts the upper-body pose from radar
point clouds whereas the LowerNet combines the UpperNet pre-
diction with the sparse point cloud on the lower body.

Two-stage pose prediction brings about twomajor benefits. First,
it can explicitly exploit the prior knowledge of kinematics to en-
hance the lower-body pose estimation. In specific, there is a close
relationship between the upper and lower body in many daily ac-
tions. For example, the motion of the arms and legs is highly corre-
lated when walking. The arms tend to retract when squatting, and
the arms extend when lunging. Recent works in computer vision
[13, 21, 31, 56] demonstrate the feasibility of leveraging the priors
to recover whole-body postures from partial observations. Techni-
cally, we employ a graph convolutional network (GCN) to extract
the features from upper-body predictions and incorporate them
as clues to enhance the lower-body predictions. In addition, the
two-stage design addresses the full-body estimation problem with
the “divide and conquer” paradigm, decomposing the task into the
upper-body estimation which is relatively easy and the more chal-
lenging lower-limber problem. Compared to a one-stage approach
(i.e., predicting the full body simultaneously), the two-stage model
converges faster during training and suffers less from overfitting.

3.4.2 Stage I: upper body estimation. To estimate the upper
body from the mmWave point cloud 𝑝𝑚𝑚 , we propose UpperNet
as demonstrated in Fig. 7 to learn the mapping from input to the
3D coordinate of each upper-body joint 𝐽𝑖 ∈ R3, 𝑖 ∈ [1, 𝑀𝑢𝑝𝑝𝑒𝑟 ],
where𝑀𝑢𝑝𝑝𝑒𝑟 = 15 denotes the number of upper body joints to be
estimated in this work.
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Specifically, we use a shared-weighted MLP [30] (Multi-layer
Perception) to extract high-level features for each point 𝑝𝑖,𝑡 in the
point cloud 𝑝𝑚𝑚 . Next, we use the self-attention [41] mechanism
to aggregate features of all points in each frame to obtain a fea-
ture representation for each frame, which is demonstrated the ef-
fectiveness in mmMesh [53]. The feature representation is then
fed into a bidirectional LSTM to capture the temporal relation-
ship between consecutive frames, which aggregates the supple-
mentary information of neighboring frames to features of the cur-
rent frame. Finally, the feature is mapped to the upper body pose
𝜃 = [𝑅𝐽 6𝐷𝑖 |𝑖 = 1, 2, · · · , 𝑀𝑢𝑝𝑝𝑒𝑟 − 1] by MLP, where 𝑅𝐽 6𝐷𝑖 is the
rotation of each joint relative to its parent joint represented as 6D
vector [67]. Following the radar motion tracking in Section 3.3, the
neck is chosen as the root joint. To obtain the final joint positions,
6D rotations are converted to the rotation matrix and fed into a for-
ward kinematics module with an initial upper body skeleton. The
joint positions are calculated as:

J𝑖 = 𝐽𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖 ) + RJ𝑖 (𝐽 𝑖 − 𝐽𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖 ) ) (3)

where 𝐽𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖 ) ∈ R3 is the parent joint of 𝐽𝑖 on the upper body
skeleton tree, RJ ∈ 𝑅3×3 is the rotation of the joint 𝐽𝑖 with respect
to its parent, and 𝐽 𝑖 , 𝐽𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖 ) are the initial position of J𝑖 , 𝐽𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖 )
respectively. Note that initial skeletons are unnecessary during op-
eration because the human pose can be represented and under-
stood via joint rotations.

The loss function used to train this UpperNet is defined as the
L2 norm of the difference between predicted joint positions Ĵ𝑡𝑖 and
ground truth joint positions Jti :

L𝑈 =
𝑇1∑
𝑡=0

𝑀𝑢𝑝𝑝𝑒𝑟∑
𝑖=1

Ĵ𝑡𝑖 − J𝑡𝑖


2

(4)

3.4.3 Stage II: lower body estimation. To estimate the lower
body pose with extremely sparse point clouds, we propose Lower-
Net which explicitly learns kinematics priors. As shown in Fig. 8,
the input consists of the upper body joint positions Ji, 𝑖 ∈ [1, 𝑀𝑢𝑝𝑝𝑒𝑟 ]
estimated by UpperNet and cropped lower-body point cloud 𝑝𝑙𝑚𝑚
which is segmented based on the height of the pelvis joint. We em-
ploy two different feature extraction networks for each modality
and then performmulti-modal feature fusion and temporal feature
aggregation to estimate the pose of the lower body.
Skeleton feature extraction. As the human body skeleton is a
natural graph structure, it is suitable to use graph convolutional
networks (GCN) [25] to extract the upper body skeleton feature.
GCN represents a specific variation of Convolutional Graph Neu-
ral Networks. Its effectiveness lies in its capability to learn node
representations by simultaneously incorporating graph structures
and node features, extending the concept of convolution from grid
data to graph data. In this module, the upper body skeleton is rep-
resented by graph𝐺 (𝑉 , 𝐸) where𝑉 is the set of joints and 𝐸 is the
connections between joints. For each joint 𝑣𝑖 , a connection point-
ing from 𝑣 𝑗 to 𝑣𝑖 is denoted as 𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸, and its neigh-
borhood is defined as 𝑁 (𝑣𝑖 ) = {𝑢 ∈ 𝑉 | (𝑣𝑖 , 𝑢) ∈ 𝐸}. The adjacency
matrix is a 𝑀𝑢𝑝𝑝𝑒𝑟 × 𝑀𝑢𝑝𝑝𝑒𝑟 matrix with 𝐴𝑖 𝑗 = 1 if 𝑒𝑖 𝑗 ∈ 𝐸 and
𝐴𝑖 𝑗 = 0 if 𝑒𝑖 𝑗 ∉ 𝐸. The joint attributes of the skeleton graph are
denoted as 𝑋 , where 𝑋 ∈ R𝑀𝑢𝑝𝑝𝑒𝑟 ×3 is a joint feature matrix with
𝑥𝑣 ∈ R3 representing the 3D coordinates of a joint 𝑣 .The simplified
graph convolution operation is defined as:

𝐻𝑡 = 𝑓 (𝐴𝑋 𝑡Θ) (5)

where 𝐴 = 𝐷−1/2𝐴𝐷−1/2. 𝐴 = 𝐴 + 𝐼 denotes the adjacency ma-
trix with inserted self-loops and 𝐷 is the diagonal degree matrix of
𝐴. Θ is a learnable parameter and 𝑓 is an activation function. We
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apply three consecutive convolution operations to the upper body
skeleton graph to obtain the spatial feature 𝐻 of the skeleton.
Pointcloud feature extraction.We use a shared MLP (Similar to
UpperNet) to extract high-level features 𝑍 𝑡𝑖 for each radar point on
the lower body.
Feature fusion. To enrich the lower-body features with the upper-
body cues, we perform the mutual attention operation to dynam-
ically learn the semantic features of each point in the context of
the upper-body skeleton. Formally, at frame 𝑡 , we first obtain the
query, key, and value matrices:

𝑄𝑡 = 𝑍 𝑡𝑊𝑄 , 𝐾
𝑡 = 𝐻𝑡𝑊𝐾 ,𝑉

𝑡 = 𝐻𝑡𝑊𝑉 (6)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑 ′ are learnable parameters, 𝑑 is the di-
mension of 𝑍 𝑡𝑖 and 𝐻𝑡𝑖 , and 𝑑

′ is the dimension of the query, key,
and value matrix. Then we apply attention operations in the spa-
tial dimension to model the interactions between radar points and
upper joints. The skeleton-aware point feature is obtained by mul-
tiplying the attention scores with the value matrix and residual
connection as:

𝐴𝑡 = 𝑍 𝑡 + 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄
𝑡 (𝐾𝑡 )𝑇
√
𝑑′

)𝑉 𝑡 (7)

The obtained feature 𝐴𝑡 is concatenated with the skeleton feature
𝐻𝑡 , and the resulting feature is fed into a self-attention module
for aggregation. This aggregated representation is then fed into
a three-layer bidirectional LSTM to learn the temporal dependen-
cies and patterns of human motion. Finally, an MLP predicts the
rotational angles of lower body joints, followed by a forward kine-
matics module (similar to UppeNet) to obtain the lower-body joint
positions 𝐿𝑖 ∈ R3, 𝑖 ∈ [1, 𝑀𝑙𝑜𝑤𝑒𝑟 ], where 𝑀𝑙𝑜𝑤𝑒𝑟 = 8 denotes the
number of lower body joints to be estimated in this work. The loss
function for training this LowerNet is defined as:

L𝐿 =
𝑇1∑
𝑡=0

𝑀𝑙𝑜𝑤𝑒𝑟∑
𝑖=1

L̂𝑡𝑖 − L𝑡𝑖


2

(8)

The output lower body skeleton 𝐿 of this module is concatenated
with the upper body skeleton 𝐽 from the input to obtain the final
output of the full body skeleton 𝐽𝑎𝑙𝑙 .

4 IMPLEMENTATION
This section describes the implementation of mmEgo, including
the setup for data collection, preprocessing of radar data, and the
neural network’s details.

4.1 Experiment Platform
mmWave Radar. The IWR6843ISK-ODS [2] mmWave radar is
used, operating on the frequency range of 60GHz to 64GHz, with
a wavelength of approximately 4mm. It consists of three transmit-
ting antennas and four receiving antennas, which provide a 120◦

azimuth FoV and a 120◦ elevation FoV, with an angle resolution of
around 15◦. We utilize the FMCW processing chain provided by TI
to produce 3D point clouds.
IMU Platform. We utilize an off-the-shelf inertial navigation de-
vice, Wheeltec N100. It integrates a gyroscope, accelerometer, and
magnetometer. We obtain the raw data output from the device and
perform calibration prior to its usage. The sampling frequency of
the raw data is set to 200Hz.

Helmet Platform.As depicted in Fig. 9(c), themmWave radar and
IMU devices are securely mounted on a 3D-printed helmet plate
using screws. The radar is oriented downward, and the distance
between the radar and the calibration board is set at 19.8cm, while
the IMU is situated directly above the radar antenna. The central
part of the helmet plate features a vertical checkerboard for cali-
bration with a size of 6×9, where each square has a side length of
30mm.
Kinect Platform. To collect the ground truth of pose and radar
motion, we use an RGB-D camera (Azure Kinect v2) that can collect
fine-grained 3D mesh of the subjects and produce accurate 3D hu-
man pose, as well capture high-resolution RGB images (for chess-
board calibration). Because of its much better resolution (typical
systematic error < 11mm + 0.1% of distance) than mmWave radar
(∼ 4cm), Kinect is commonly used to collect ground truth in RF
sensing tasks [43, 47, 55].

4.2 Data Acquisition and Preprocessing
4.2.1 Data Acquisition. We conduct data collection at two distinct
locations: a dimly lit office building hallway (Fig. 9(a)) and awell-lit
classroom (Fig. 9(b)). These environments have unique characteris-
tics: the hallway is relatively open, with walls approximately 4 me-
ters from the subject, while the classroom is a confined space with
tables, chairs, and electronic devices situated at around 2 meters
from the subject. Three adult male volunteers, varying in height
from 1.75 to 1.83 meters and weighing between 70 to 83 kilograms,
are recruited to wear the helmet depicted in Fig. 9(c) and execute a
predefined set of activities. Notably, the use of a calibration board
is unnecessary in real-world applications.

For our experimental activities, we meticulously selected 13 ac-
tions to encompass a wide range of head and upper/lower limb
movements. These actions included activities with subtle head mo-
tions, such as (1) walking in place; (2) walking; (3) horizontal abduc-
tion and retraction of the arms; activities primarily involving head
motions, including (4) shaking head; (5) nodding head; (6) turn-
ing head; actions with voluntary head motions, namely (7) look-
ing left and right while walking in place; (8) looking up and down
while walking in place; (9) looking up and down while swinging
arms; and activities featuring leg movements, such as (11) lunge;
(12) high leg raise; (13) squat. Each action was repeated for one
minute, resulting in the acquisition of more than 5400 radar frames
and 100K IMU measurements for each activity. To establish the
ground truth of the pose, volunteers performed all actions facing
the Kinect camera. Our data collection procedure received approval
from the Institutional Review Board (IRB) of authors’ institution.

4.2.2 Preprocessing. To mitigate the clutter in point clouds and
separate human subjects, we apply a cylindrical crop to the point
cloud using the radar as the upper circle center with a diameter
of 1.5m and a height equal to the distance from the radar to the
ground. For accurate ground truth, we transform them from the
Kinect coordinate system to the radar coordinate system utilizing
chessboard calibration [60]. Finally, we use the Robot Operating
System (ROS) for data collection, label them with corresponding
timestamps, and synchronize heterogeneous data by adjusting the
timestamps with internal time delays of each sensor.
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Fig. 9. Head-mounted radar testbed and experimental scenarios.

4.3 Model Setting and Training
This section describes the details of the mmEgo model, training,
and testing procedure for each stage. In Radar motion tracking
module, an FC with size (6, 512) is used for feature embedding.
Both bidirectional LSTMs for short and long timescales are com-
posed of two layers with dimensions being 512.TheAttention layer
is realized by a (1024, 1) fully connected network. Finally, an FC
layer with a size of (1024, 9) outputs the radar position and ori-
entation. In UpperNet, the feature extraction uses a shared MLP
consisting of three layers, with the dimensions (6, 16, 32, 64). We
adopt batch normalization followed by ReLU activation functions
after all layers. The aggregation module is implemented by an FC
of (64, 1). The subsequent LSTM adopts a bidirectional three-layer
architecture with a size of 64. Finally, anMLP consisting of two lay-
ers with sizes (128, 64, 42) obtains joint rotation angles. The point
feature extraction of LowerNet is the same as UpperNet.TheGCN
used for extracting upper body skeleton features consists of three
layers with channel sizes of (32, 64, 128). The dimension of the At-
tention module used for fusion is (128, 128). The size of the aggre-
gation module is (128, 1). A bidirectional LTSM and MLP (similar
to UpperNet) produce the angle estimations.

For every activity, 80% of the data collected from each subject
are used for model training, and the remaining 20% serve as the
testing set.The training records are segmented into 10-second frag-
ments, containing a sequence of 100 radar frames. During the train-
ing, we set the batch size to 20 and the learning rate to 0.0003. The
hyper-parameters 𝛼 and 𝛽 in the loss functions (Equation 2) are set
as follows:𝛼 = 3 and 𝛽 = 5. Ourmodel is implementedwith Python
3.9 and PyTorch 1.11.0, and trained with NVIDIA RTX 3090.

5 EVALUATION
The section starts with the evaluation metrics (Section 5.1) and
competing approaches (Section 5.2). The overall performance is
first reported in Section 5.3, followed by evaluations of key design
components (Section 5.4). The system complexity and latency are
reported in Section 5.4.6. Section 5.5 demonstrates case studies.
5.1 Evaluation Metrics
To quantify the performance of our proposed approach, we adopt
the following metrics to evaluate the accuracy of radar motion
tracking and body pose estimation, respectively.
Average Joint Localization Error (S). The metric is defined as
the average Euclidean distance between the predicted skeleton key
points (i.e., joint locations) and their ground truths[23, 39, 53].
Average Joint Rotation Error (Q). Joint rotation angles reflect
the accuracy of the pose more directly than joint positions. The

metric is defined as the average joint angle (represented in axis-
angles) differences between predicted joint rotations and the ground
truth rotations [53].
Average Radar Rotation Error (R). Similar to Average Joint Ro-
tation Error, this metric measures the average angle differences
between predicted radar rotations and the ground truth rotations.
Average Radar Translation Error (T). This metric is defined as
the average Euclidean distance between the predicted radar loca-
tion and the ground truth locations.

5.2 Baseline
We compare our approach with the following radar motion track-
ing and human pose estimation baselines.These approaches report-
edly outperform conventional approaches [15, 38]. Note that radar
motion cancellation for other sensing modalities (e.g., UWB) and
sensing tasks (e.g., vital signs detection [59]) are considered out of
scope due to the distinct radar point cloud patterns.
5.2.1 Radar motion tracking. As mmEgo is the first to estimate
6DoF (degree-of-freedom) root-relative radar motion from IMU,
we develop three baseline approaches based on the popular neu-
ral networks suitable for IMU data.
RNN + Attention. A single RNN is applied on the entire IMU
measurement sequence, representing the most frequently used ap-
proach [12, 38, 58]. Attention layer is added to make the output
sample frequency compatible.
BiRNN [34] + Attention. Bidirectional RNN is adopted which
considers the information both before the current time and after
the current time. BiRNN effectively captures more comprehensive
sequence information than RNN.
Temporal self-attention [41].Temporal self-attention canmodel
the temporal relationships between time steps in a time series. We
use it as a baseline to capture the time dependencies of the IMU
measurement data.
5.2.2 Human pose estimation. To evaluate our advantages in the
egocentric scenario, we reproduce the recent designs for fixed in-
frastructure as baselines.
mm-Pose [36]. mm-Pose is an early work of pose estimation us-
ingmmWave radar. A low-size high-resolution radar-to-image rep-
resentation is presented and a forked CNN architecture was used
to predict the real-world position of the skeletal joints in 3D space.
P4Transformer [14]. P4Transformer is an advanced model de-
signed for point clouds used by recent works (e.g., mmBody [11]).
It improves the efficiency and accuracy of point cloud processing
through 4D convolution operations and Transformer structures.
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Table 1: Overall performance of mmEgo.

Model Whole body Upper body Lower body
Q (°) S (cm) Q (°) S (cm) Q (°) S (cm)

mm-Pose[36] 10.885 10.734 10.439 8.964 11.923 13.682
P4Transformer[14] 11.804 10.873 11.326 9.052 12.921 13.832

PCB[66] 11.278 11.031 10.796 9.070 12.404 14.214
mmPose-NLP[35] 10.640 10.406 10.453 8.492 11.077 13.493

mmMesh[53] 7.215 7.783 7.127 6.639 7.423 9.529
mmEgo 4.914 4.346 5.217 4.287 4.207 5.460

Point-convolution-based (PCB) [66]. PCB is also a convolution
method designed for point cloud [50] and pose estimation.
mmPose-NLP [35]. mmPose-NLP adopts natural language pro-
cessing ideas to represent mmWave point clouds as a collection
of word vectors by voxelization and employs a seq2seq model to
estimate human body pose.
mmMesh [53]. mmMesh is a state-of-the-art method that esti-
mates human pose with radar point clouds. It proposes optimized
pointNet and anchor module design.
5.3 Overall Performance
5.3.1 Average accuracy. Theaverage accuracy ofmmEgo and base-
lines are reported in Table 1, including the whole body, upper body,
and lower body accuracy. mmEgo achieves an average joint local-
ization (rotation) error of 4.3cm (4.9◦) in the whole body estima-
tion, 4.2cm (5.2◦) in the upper body, and 5.4cm (4.2◦) in the lower
body. Our method outperforms the first 4 baselines by at least
6cm. Compared to state-of-the-art (i.e., mmMesh), mmEgo also im-
proves the overall accuracy by 3.4 cm (44.2%). The results show the
overall performance gain of mmEgo in egocentric settings.

5.3.2 Per-joint accuracy. We further break down the localization
error of each joint in Fig. 12, where the corresponding locations
of 21 joints on a skeleton are labeled in Fig. 11. Per-joint accuracy
highlights the effectiveness of mmEgo. Specifically, our method
significantly outperforms the state-of-the-art (e.g., mmMesh) at
wrists (#7 and #11) and ankles (#14 and #18). The prior method
suffers from 17𝑐𝑚 errors, whereas mmEgo manages to control the
error of all joints within 7.03 cm, improving the accuracy by up
to 10.59 cm. Note that these leaf joints have the largest angle lim-
its among all joints and therefore represent the ones that are most
challenging to predict. Suffering from radar motion, the real-world
experience of baselines dramatically deteriorates and even becomes
difficult to interpret human pose, while our design which consid-
ers radar motion and kinematics priors can produce much more
robust predictions.

5.3.3 Qualitative results. Fig. 10 shows 4 qualitative examples of
the reconstructed 3D human skeletons. Fig. 10(a) is the result of
walking in place. Our method is slightly better than mmMesh for
the activity with subtle head motion. In Fig. 10(b), a lunge action
is captured. It is clear that the baseline has difficulty estimating
the lower-body pose, while our method that integrates upper-body
cues is almost identical to the ground truth. Finally, Fig. 10(c) and
(d) demonstrate left and right arm horizontal abduction and retrac-
tion with voluntary head motions. The baseline is greatly affected
by head motion, making the posture difficult to estimate, while
our method, which restores the spatial-temporal features of pose
changes, provides more reliable results.

5.4 Effectiveness of Designs
5.4.1 Accuracy of radarmotion tracking. Table 2 compares the radar
motion tracking of our method with baselines in Section 5.2.1. Our
approach reduces rotation errors by 26.0% and the translation er-
ror by 46.6%.These results come from our multi-scale LSTM design
that predicts head motions at both small and large time scales.

5.4.2 Impact of radar motion decoupling. We investigate the effec-
tiveness of the radar motion decoupling on pose estimation accu-
racy. Table 3 shows that decoupling radar motion using proposed
neck-relative radar position and orientation (𝑃𝑟𝑒𝑑𝑟 ) can clearly
outperform the results by directly estimating the radar’s absolute
position and orientation (𝐼𝑀𝑈𝑟 ). This observation highlights the
superiority of our proposed approach in overcoming the large drift
issue of IMU. Moreover, we repeat the experiment with ground
truth radar position and orientation (𝐺𝑇𝑟 ). Our joint rotation ap-
proaches approach ground truth, while the ground truth further
improves joint position accuracy by 1.2 cm. To further demonstrate
our method is generic, we apply the radar motion decoupling to
enhance all baseline methods. Comparing the performance in Ta-
ble 5 with the original results in Table 1, the accuracy of all exist-
ing baselines shows improvement with the proposed radar motion
decoupling. However, our method still has the best performance,
outperforming the baseline by at least 23%, which is benefited from
our two-stage network design.

Our design benefits from accurate radar motion tracking to de-
couple radar point cloud. We further investigate the impact of the
error from radar motion tracking on the downstream tasks of pose
estimation by iterating through rotation errors (R) from 0 to 6 de-
grees, as well as translation errors (T) from 0 to 6 cm. As shown in
Fig. 13, the average joint location error in pose estimation steadily

Table 2: Accuracy of radar motion tracking.
Model R (°) T (cm)

RNN + Attention 2.872 3.831
biRNN + Attention 2.776 3.428

Temporal self attention 3.209 4.811
Ours 2.375 2.567

Table 3: Effects of radar
motion decoupling.

Q(°) S(cm)
w/ 𝐺𝑇𝑟 4.822 3.173
w/ 𝑃𝑟𝑒𝑑𝑟 4.914 4.346
w/ 𝐼𝑀𝑈𝑟 6.506 6.031
w/o 𝑟 6.939 6.095

Table 4: Effects of
upper-body clues to

lower-body estimation.
Q(°) S(cm)

w/ 𝐺𝑇𝑢 2.925 3.526
w/ 𝑃𝑟𝑒𝑑𝑢 4.207 5.460
w/o 𝑢 5.737 6.952
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Fig. 10.Qualitative results of mmEgo vs. baseline.
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increases when rotation and translation errors of the radar track-
ing escalate. The contour line (denoted as AJE=7.7cm) represents
the error produced by the state-of-the-art method (mmMesh [53]).
When the trajectory error of radar tracking surpasses this thresh-
old, it adversely impacts the pose estimation task. The pentagram
★ denotes the error position estimated by our design. The result in-
dicates our radar motion decoupling can still improve the pose es-
timation accuracy when the tracking error increases within 100%.

Table 5: Generic benefits of radar motion decoupling.
Model Q (°) S (cm)

mm-Pose[36] 9.767 8.098
P4Transformer[14] 8.962 6.943

PCB[66] 8.906 7.701
mmPose-NLP[35] 6.522 6.988

mmMesh[53] 5.467 5.650
mmEgo 4.914 4.346

5.4.3 Impact of upper body cues. We study the effectiveness of us-
ing upper-body cues to enhance lower-body predictions. Table 4
shows that the predicted upper body (w/ 𝑃𝑟𝑒𝑑𝑢 ) improves the av-
erage rotation accuracy by 26.7% compared to directly estimating
the lower body from scarce point cloud (w/o𝑢).The error is further
reduced if the ground truth upper-body pose (w/𝐺𝑇𝑢 ) is available.
The results prove that kinematics priors provide important hints
for inferring the body parts that are not directly observed.

Left Arm Right Arm
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Fig. 12. Per-joint localization errors.

R(°)0 1 2 3 4 5 6T(cm)
0

1
2

3
4

5
6

A
JE

(cm
)

4

6

8

10

AJE=7.7cm
Ours

4

5

6

7

8

9

10

Fig. 13. Impact of radar tracking errors on pose estimation.

5.4.4 Impact of unseen scenes. mmWave signals traverse multiple
paths and carry environment-specific information. We investigate
the robustness of our design in unseen environments. Specifically,
we use data collected in the hallway (depicted in Fig. 9(a)) for train-
ing and test the performance in a different scene: the room in Fig.
9(b). As shown in Table 6, the model demonstrates robustness in
the new environment. In our future extension, we might collect
more data from diverse environments and explore domain adap-
tion techniques [22] to further enhance the robustness.

Table 6: Performance in unseen scenes.
Q (°) S (cm)

Hallway 5.474 4.456
Room 5.835 4.597

5.4.5 Impact of unseen subjects. We assess the generalization abil-
ity of mmEgo by the evaluating performance of new subjects who
are not included in the training stage. Specifically, we train the
model using data from one subject and reserve the data from two
other subjects for testing. The results in Table 7 clearly show our
superiority to the baseline. For example, themmMesh’s rotation er-
ror increases by 3.7◦ (51%) whereas our method only suffers from
0.1◦ (2%) more errors. This demonstrates the multi-stage design
breaks down a complex problem into simpler stages, making the
model much more generalizable.
5.4.6 Complexity and latency. We measure the model complexity
and the prediction latency of mmEgo. The system comprises a to-
tal of 25.13M trainable parameters, with the radar motion tracking
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Table 7: Performance for unseen subjects.
Model Q (°) S (cm)

mm-Pose[36] 11.597 11.349
P4Transformer[14] 11.961 11.169

PCB[66] 12.741 12.856
mmPose-NLP[35] 13.052 11.009

mmMesh[53] 10.938 8.517
mmEgo 5.025 4.574

module accounting for 92% of the parameters (23.11M).The Upper-
Net consists of 0.77M parameters, while the LowerNet has 1.25M
parameters. Furthermore, we stream the data to a desktop with
NVIDIA GeForce RTX 2060 GPU and Intel Core i7-9700 CPU and
to perform inference. This setup is commonly adopted in VR head-
sets [5, 6]. The average latency of the entire system is measured
at 19.8ms, where the radar motion tracking module accounted for
6.9ms of the latency, while UpperNet and LowerNet have about
6.9ms and 6.0ms latency respectively. These results demonstrate
the feasibility of real-time operations. With the increasing avail-
ability of 5G networks and mobile edge computing, we envision
that resource-constrained devices can offload the computation to
the edge or cloud, enabling real-time egocentric pose estimation
with large mobility.

5.5 Case Study
mmEgo can be widely utilized for various downstream tasks in
emerging scenarios (e.g., VR and AR). We develop and evaluate
two representative tasks: action recognition and air painting.
Case1: Action Recognition. The results of egocentric pose esti-
mation can be applied to recognize the action, which plays a cru-
cial role in many applications (e.g., safety monitoring, and motion
assistance). We implement the state-of-the-art action recognition
network (e.g., STGCN [54]) which takes a skeleton sequence as
the input. The training and testing are performed with our dataset
introduced in Section 4, which consists of 13 different activities de-
noted as (1) ∼ (13). The ground truth is labeled during data collec-
tion. To highlight the accuracy of egocentric pose estimation, we
compare the recognition accuracy between two settings: using the
predicted skeleton by mmEgo and using the ground truth skeleton
collected by Kinect. Remarkably, both of them achieve an average
accuracy and F1 Score exceeding 99% (Table 8), suggesting that
the impact of pose estimation errors of mmEgo can be considered
negligible for this task. Fig. 14 further reports the recognition ac-
curacy of each action via a confusion matrix. All actions are identi-
fied with an accuracy of 96% or higher, with a significant majority
being correctly identified with a precision of 100%.
Case2:Air Painting.Wedevelop air painting usingmmEgowhich
can understand the fine-grained handmotions of the user.We emu-
late a VR/AR gaming scenario, where the user draws various shapes
with a hand in the air including (1) ”O”, (2) ”X”, (3) ”✔”, (4) ”□”,
(5) ”△”, and (6) ”-” as the commands to control objects in the vir-
tual environment. Fig. 15 compares the predicted hand trajectories
by mmEgo and the ground truth. The estimated hand trajectories
reproduce the true semantics well. Furthermore, we adopt an ST-
GCN network (similar to action recognition) for air painting clas-
sification, with the only difference being that the arm poses rather
than the whole-body pose is used as the input. Table 9 compares

recognition accuracy with predicted arm pose with ground truth
arm pose. The predicted arm pose achieves an F1 score and accu-
racy of 91%, which is 3% less than the ground truth. This suggests
the potential to use egocentric arm pose estimation for human and
VR/AR interactions.

To sum up, the case studies show the success of mmEgo in repre-
sentative downstream tasks. Therefore, we envision that it has the
potential to be a generic enabler for a wide range of applications.

6 DISCUSSION AND FUTUREWORK
This work presents the first proof-of-principle egocentric human
pose estimation using radar. We notice that there are limitations
to be further investigated in future extensions.
Global human pose estimation. mmEgo predicts the pose in
the root-relative system. There might be applications that might
require the global posture of the user (i.e., pose in the global coor-
dinate system). mmEgo can be incorporatedwith the existing radar
SLAM techniques [29] to localize the user and convert local pose
to global pose, allowing for a more comprehensive understanding
and interaction within the VR environment.
More complicated situations.We evaluate mmEgo with the col-
lected dataset consisting of 13 representative activities. In the fu-
ture, we plan to investigate more complex scenarios.We admit that
the inherent randomness and diversity of human actions could im-
pose new challenges, calling for more sophisticated designs. There
are two challenging situations we will consider in our future work.
(i) There are activities where the upper and lower body are loosely
correlated. For example, people could wave their hands in either
stand-up or sitting poses. When the correlation between upper
and lower body movements is disrupted, our current model relies
on the points on the lower limbs to predict the lower-body pose.
We envision that our future work can exploit the context informa-
tion to improve the results. For example, we could use previous
sitting-down motions to predict the user is in the sitting pose. (ii)
the user might carry items that could lead to a more significant
occlusion of the lower limbers. In such cases, the material of the
items will play an important role in the results. For the materi-
als that mmWave can penetrate through (plastic, wood, cloth), our
radar-based design could effectively obtain low-limb pose informa-
tion even under significant occlusion, which is a unique advantage
over the camera-based approaches. However, metallic items might
be more challenging to handle for an RF-based approach and we
require advanced signal processing andmachine learning methods
to mitigate their impacts.
Alternatives for IMU. The value of the work is more on the im-
pact of egocentric radar on human pose sensing than radar motion
tracking itself. IMU is used due to its low cost, robustness, and ubiq-
uity. Alternative solutions such as cameras or LIDAR devices also
achieve radar motion tracking in other suitable scenarios. In addi-
tion, an interesting topic in the future might be how to estimate
radar motion using IMU data collected offline and radar data with-
out external devices such as IMUs.
Implicit IMU fusion. In our design, we explicitly measure the
radar motion and mitigate its impact on radar via coordinate align-
ments. Alternatively, we could also implicitly combine IMU mea-
surement with radar using a data-driven approach, i.e., training
a model that learns to perform radar motion mitigation. In our
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Fig. 14. Accuracy of action recognition.

GT mmEgo

Fig. 15. Air painting.

Models F1 (%) Accuracy (%)
GT 99.62 99.64

mmEgo 99.61 99.63
Table 8. Action recognition.

Models F1 (%) Accuracy (%)
GT 94.02 94.83

mmEgo 91.81 91.11
Table 9. Air painting recognition.

future work, we will exploit various sensor fusion models (e.g.,
self/cross-attention) and customize them to accommodate the sig-
nificant modal difference between radar and IMU.
Upper-body pose refinement. In general, the radar point clouds
are more sparse on the lower body than they are on the upper body.
This motivates our design that integrates upper-body pose and
kinematics priors to predict lower-body pose. We notice that there
could be specific activities (e.g., squat) in which the lower limbs are
prominent in the radar point cloud, making lower-body pose easier
to estimate. Therefore, our future work could use the lower-limb
prediction to further refine the upper-body pose in such activities.
We believe that dynamically adopting the optimization strategies
for activities with different characteristics of point cloud distribu-
tions have the potential to further improve accuracy.

7 RELATEDWORK
Egocentric Human Pose Estimation. Existing egocentric pose
estimation designs primarily rely on camera [17, 19, 20, 33, 51, 61].
Earlier studies [33, 40, 51] employ head-mounted fisheye cameras
and gradually reduce the distance between the camera and the
user. Recent inside-in work, SelfPose [39], has achieved an AJE
of 4.23 cm on the Human3.6M dataset [18]. With the advancement
of SLAM and image processing technologies, there is a growing
interest in outward-looking research, which shifting the focus to
regular RGB cameras placed inside-out [17, 19, 20, 61] to capture
self-pose, continuously lowering the lower bound of information
required for reconstructing the human body. However, camera-
based methods are susceptible to the impact of lighting and ad-
verse weather conditions, as well as the risk of privacy breaches.
Our work, on the other hand, utilizes radio frequency (RF) signals
to perceive the human body, thus avoiding privacy concerns and
exhibiting better robustness to environmental factors.
RF-based Human Pose Estimation. RF sensing has been exten-
sively studied for various applications including pose estimation
[32, 37, 43–45, 48, 55, 62–64]. Among them, recent works using
mmWave radar achieve impressive performance.mmPose [36] con-
verts the radar point cloud into an image and uses CNN to perform
human pose estimation. Li et al. [27] utilizes a forked CNN to pro-
cess the radar range-angle heatmaps for pose estimation.MARS [8]
also uses a CNN for pose estimation after sorting the point cloud by
coordinates. mmPose-NLP [35] analogizes the pose estimation task
to natural language processing and extracts the skeleton from vox-
elized point clouds using a seq2seq structure. mmMesh [53] uses
optimized PointNet as the backbone network to extract both global
and local features for a finer-grained human mesh reconstruction.

The authors’ follow-up work M4esh [52] extends the scene to mul-
tiple people by detecting individuals’ bounding boxes on the radar
heatmaps and addresses occlusion among subjects. m3Track [26]
also accomplishesmulti-person pose tracking by preprocessing the
range-angle heatmapwithMVDR and using a conv-LSTMnetwork
for prediction. However, these aforementioned studies observe the
subject from the outside-in view and thus do not suffer from ran-
dom radar motion and scarcity of lower-body point clouds. In con-
trast, our work is the first to estimate the human skeleton from the
egocentric view and overcome these challenges.
Pose Estimation fromSparseWearable Sensors. Full-body Pose
estimation using sparse wearables is also studied. SIP [42] was the
first to use six IMUs placed on the head, arms, pelvis, and legs to
estimate full-body pose with optimizations. DIP [16], TransPose
[58], PIP [57] and TIP [24] further improve the accuracy, smooth-
ness, and real-time performance of this setup. LoBSTr [56] con-
siders fewer sensors, i.e., tracker information from 4 joints (head,
two hands, torso), they used a GRU network to infer lower body
motions from these joint signals. Recent advances [7, 13, 21, 49]
further relax the input constraints to head and hand signals only.
In contrast, our design only requires the user to wear a single
head-mounted device. We leverage the remote sensing capability
of radar for full-body pose estimation. Additionally, we designed
the IMU tracking algorithm specifically for the compensation of
the random motion noise in the radar point cloud.

8 CONCLUSION
This paper presents mmEgo, the first proof-of-concept egocentric
human pose estimation design using mmWave radar. Novel de-
signs are proposed to address the challenges of radar sensing from
the egocentric perspective. We implemented mmEgo on the com-
moditymmWave radar and evaluated it on the representative activ-
ities. mmEgo achieves an average joint localization error of 4.3cm
and an average rotation error of 4.9◦. We envision that our ap-
proach holds significant potential in applications (e.g., VR/AR).
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